JTR03103-002b

36V 入力 300mA 低消費電流 高速 電圧レギュレータ

☆AEC-Q100 Grade2

■概要

XD6702 シリーズは、CMOS プロセスの 36V 入力低消費電流高速電圧レギュレータ IC です。

内部は基準電圧源、誤差増幅器、ドライバトランジスタ、過電流保護回路、過熱保護回路、ソフトスタート回路、位相補償回路等から構成されています。

出力電圧は、レーザートリミングにより内部にて固定されており、1.8V~18.0V まで選択が可能です。

過電流保護機能と過熱保護機能を内蔵しており、出力電流が制限電流に達するか、ジャンクション温度が制限温度に達するかによって 保護機能が動作します。

ソフトスタート回路は IC 起動時に VIN から VOUT へ流れる突入電流を抑え、安定した立ち上がりシーケンスを実現します。

CE 端子に L レベルを入力する事で IC はスタンバイ状態になり、消費電流を 0.1µA 以下に低減します。

CL はセラミックコンデンサ等の低 ESR コンデンサにも対応しています。

■用途

● カーインフォテイメント

● カーアクセサリ

・車載カメラ

・ドライブレコーダー

•ETC

● 車載 ECU

■ 特長

入力電圧範囲 : 4.5V ~ 36.0V (絶対最大定格 42.0V)

尖頭電圧 : 46.0V (印加時間≦400ms)

出力電流 : 300mA

出力電圧範囲 : 1.8V ~ 18.0V

Vouт < 6.0V, 0.1V step 設定 Vouт ≥ 6.0V, 0.5V step 設定

出力電圧温度特性 :±50ppm/°C (TYP.)

消費電流 : 40µA

入出力電位差 : 350mV@louт=100mA,Vouт=5.0V

リップル除去率 : 65dB@1kHz スタンバイ電流 : 0.1μA

保護機能 : 過電流保護

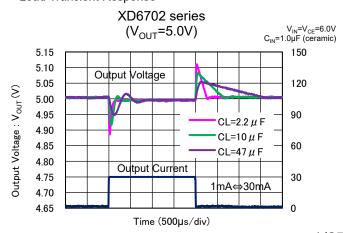
過熱保護

付加機能 : ソフトスタート

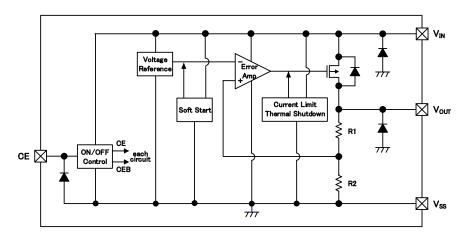
CE 機能 (Active High)

出力コンデンサ : セラミックコンデンサ対応 (2.2µF)

パッケージ: SOT-89-5


環境への配慮 : EU RoHS 指令対応、鉛フリー

■代表標準回路


INPUT V_{IN} V_{OUT} CE $C_{IN}=1.0 \mu F$ (Ceramic) $C_{L}=2.2 \mu F$ (Ceramic)

■代表特性例

Load Transient Response

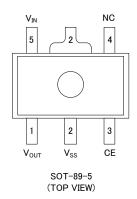
■ブロック図

*上図のダイオードは、静電保護用のダイオードと寄生ダイオードです。

■製品分類

1) 品番ルール XD6702123456-7(*1)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
1	Туре	D	Current Limit, Thermal Shutdown, Soft Start, ON/OFF Control
23	Output Voltage ^(*2)	18 ~ J0 ^(*3)	For the voltage within 1.8V \sim 9.5V : e.g. $3.3V \rightarrow 2=3$, $3=3$ $5.0V \rightarrow 2=5$, $3=0$ For the voltage within 10.0V \sim 18.0V : e.g. $10.0V \rightarrow 2=A$, $3=0$ $12.5V \rightarrow 2=C$, $3=5$ $18.0V \rightarrow 2=J$, $3=0$
4	Output Voltage Accuracy	1	± 1%
56-7	Packages (Order Unit)	PR-Q ^(*1)	SOT-89-5 (1,000pcs/Reel)


^{(*1) &}quot;-Q"は、AEC-Q100 準拠、ハロゲン&アンチモンフリーかつ EU RoHS 対応製品です。
(*2) 他の電圧を要望される場合は弊社営業担当にお問い合わせ下さい。
(*3) 10.0V ~ 18.0V 台については、「②」にそれぞれ I を除く A ~ J を使用。

■標準電圧

●標準電圧品番例

V _{OUT} (V)	PACKAGES	
VOUT (V)	SOT-89-5	
1.8	XD6702D181PR-Q	
2.5	XD6702D251PR-Q	
2.8	XD6702D281PR-Q	
3.0	XD6702D301PR-Q	
3.3	XD6702D331PR-Q	
5.0	XD6702D501PR-Q	
8.0	XD6702D801PR-Q	

■端子配列

■端子説明

PIN NUMBER	PIN NAME	FUNCTIONS
1	Vout	Output
2	Vss	Ground
3	CE	ON/OFF Control
4	NC	No Connection
5	V _{IN}	Power Input

■機能表

PIN NAME	SIGNAL	STATUS
CE	L	Stand-by
	Н	Active
	OPEN	Unstable

^{*}CE 端子は OPEN 状態を避け、任意の固定電位として下さい。

■絶対最大定格

PARAMETER		SYMBOL	RATINGS	UNITS	
Input V	oltage	V _{IN}	-0.3 ~ 42.0	V	
Output (Current	Іоит	600(*1)	mA	
Output \	Output Voltage		-0.3 ~ V _{IN} + 0.3 or 42.0 ^(*2)	V	
CE Input Voltage		V _{CE}	-0.3 ~ 42.0	V	
Power Dissipation	SOT 90 F	9-5 Pd	D-1	500 (IC 単体)	m\\/
(Ta=25°C)	SOT-89-5		1750 (JESD51-7 基板) ^(*3)	mW	
Surge Voltage		V _{SURGE}	46.0 (*4)	V	
Operating Ambient Temperature		Topr	-40 ~ 105	°C	
Junction Temperature		Tj	-40 ~ 125	°C	
Storage Te	mperature	Tstg	-55 ~ 125	°C	

各電圧定格は Vss を基準とする。

- (*1) Іоит は Pd/(V_{IN} Vоит)以下でご使用下さい。
- $^{(*2)}$ 最大値は V_{IN} +0.3V と 42.0V いずれか低い方になります。
- (*3) 基板実装時の許容損失の参考データとなります。実装条件についてはパッケージインフォメーションを参照下さい。
- (*4) 印加時間 ≦ 400ms

■電気的特性

				Ta=25°C		-40°0	S≦Ta≦105	5°C(*6)	=	
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Input Voltage	V _{IN}		4.5	-	36.0	4.5	-	36.0	V	1
Output Voltage	V _{OUT(E)} (*1)	I _{OUT} =10mA	×0.99	V _{OUT(T)} (*2) <e-0></e-0>	×1.01	×0.96	V _{OUT(T)} (*2) <e-0></e-0>	×1.04	V	1
Quiescent Current	I _{SS}	I _{OUT} =0mA	-	40	80	-	40	90	μA	2
Stand-by Current	I _{STB}	V _{IN} =36.0V,V _{CE} =V _{SS}	-	0.01	0.10	-	0.01	2.10	μA	3
Maximum Output Current(*3)	I _{OUTMAX}	V _{IN} =V _{OUT(T)} +2.0V	300	-	-	300	-	-	mA	1
Load Regulation	ΔV _{OUT}	V _{IN} =V _{OUT(T)} +2.0V 0.1mA≦I _{OUT} ≦300mA	-	V _{ОUТ(Т)} 60 V _{ОUТ(Т} 60	≦5.0V 85 >>5.0V 130	-	Vоит(т) 60 Vouт(т	≦5.0V 230 5>5.0V 275	mV	1
Dropout Voltage	Vdif (*4)	I _{OUT} =100mA	-	<e< td=""><td>-1></td><td>-</td><td><e< td=""><td>-1></td><td>mV</td><td>1</td></e<></td></e<>	-1>	-	<e< td=""><td>-1></td><td>mV</td><td>1</td></e<>	-1>	mV	1
Line Regulation	ΔV _{OUT} / (ΔV _{IN} •V _{OUT})	V _{OUT(T)} +0.5V≦V _{IN} ≦36.0V	-	0.01	0.03	-	0.01	0.03	%/V	1
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTopr•V _{OUT})		-	±50	-	-	±50	-	ppm /°C	1
Ripple Rejection Ratio	PSRR	$\begin{aligned} &V_{\text{IN}} \!\!=\!\! V_{\text{OUT}(T)} \!\!+\! 1.0 V_{\text{DC}} \!\!+\! 0.5 V_{\text{p-pAC}} \\ &I_{\text{OUT}} \!\!=\!\! 10 \text{mA, f=1kHz} \\ &C_{\text{IN}} \text{ Unconnected} \end{aligned}$	-	65	-	-	65	-	dB	4
Limit Current(*3)	Ішм	V _{IN} =V _{OUT(T)} +2.0V V _{OUT} =V _{OUT(E)} ×0.95	370	460	-	310	460	-	mA	1
Short - Circuit Current	I _{SHORT}	V _{OUT} =V _{SS}	-	115	-	-	115	-	mA	1
Thermal Shutdown Detect Temperature	T_{TSD}	Junction Temperature	-	150	-	-	150	-	°C	1
Thermal Shutdown Release Temperature	T _{TSR}	Junction Temperature	-	140	-	-	140	-	°C	1
Thermal Shutdown Hysteresis Width	T _{TSD} -T _{TSR}	Junction Temperature	-	10	-	-	10	-	ů	1
Soft-Start Time(*5)	tss	V _{CE} =0V→V _{IN}	-	370	890	-	370	1100	μs	(5)
				V _{OUT(T)}	≦3.3V		V _{OUT(T)}	≦3.3V		
				55	95		55	155		
Inrush Current	I _{RUSH}	V _{CE} =0V→V _{IN}	-	3.3V <v<sub>OI</v<sub>	_{ЈТ(Т)} ≦5.0V Г	_		_{ЈТ(Т)} ≦5.0V	mA	(5)
				70	135		70	215		9
				V _{OUT(T)}	Γ			>5.0V		
OF HILL			0.5	125	210	0.5	125	330		<u> </u>
CE "H" Level Voltage CE "L" Level Voltage	V _{CEH}		2.5 V _{SS}	-	36.0 1.2	2.5 V _{SS}	-	36.0 1.2	V	6
CE "H" Level Current		V _{CE} =V _{IN} =36.0V	-0.10		0.10	-0.10	-	0.10	μA	6
CE "L" Level Current	I _{CEL}	V _{IN} =36.0V,V _{CE} =V _{SS}	-0.10	<u> </u>	0.10	-0.10	-	0.10	μΑ	6
SZ E EGVELOUITEIR	ICEL	V IIV -00.0 V, V CE- V 55	-0.10		0.10	-0.10		0.10	μΛ	9

特に指定がない場合、 V_{IN} = $V_{OUT(T)}$ +1.0V, V_{CE} = V_{IN} , I_{OUT} =1mA , C_{IN} =1.0 μF , C_L =2.2 μF

但し、V_{IN} <4.5V となる場合は、V_{IN}=4.5V とする。

 $^{(^*1)}$ $V_{\text{OUT(E)}}$: 実際の出力電圧値。

(*2) V_{OUT(T)} : 設定出力電圧値。

(*3) 実装時の放熱性の違いにより、サーマルシャットダウン回路が動作し、最大出力電流まで流せない場合があります。

(*4) Vdif={ V_{IN1}-V_{OUT1}}と定義。

 V_{IN1} : 入力電圧を徐々に下げて V_{OUT1} が出力された時の入力電圧値。

 V_{OUT1} : I_{OUT} =100mA 時に十分安定した V_{IN} を入力したときの出力電圧に対して 98%の電圧値。

 $^{(5)}$ CE 端子に CE "H" レベル電圧以上が入力されてから、出力電圧値が $V_{OUT(T)} \times 0.9V$ 以上になった時の時間。

(*6) -40°C≦Ta≦105°Cの規格値は設計値となります。

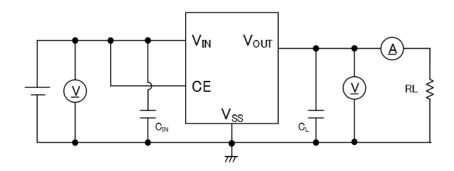
■電気的特性

電圧別一覧表<E-0>

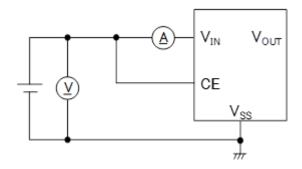
		<e< th=""><th>-0></th><th></th></e<>	-0>			
NOMINAL OUTPUT	Output Voltage					
VOLTAGE	V _{OUT(E)} (V)					
	Ta=:	25°C	-40°C≦T	a≦105°C		
Vout(t) (V)	MIN.	MAX.	MIN.	MAX.		
1.8	1.782	1.818	1.728	1.872		
1.9	1.881	1.919	1.824	1.976		
2.0	1.980	2.020	1.920	2.080		
2.1	2.079	2.121	2.016	2.184		
2.2	2.178	2.222	2.112	2.288		
2.3	2.277	2.323	2.208	2.392		
2.4	2.376	2.424	2.304	2.496		
2.5	2.475	2.525	2.400	2.600		
2.6	2.574	2.626	2.496	2.704		
2.7	2.673	2.727	2.592	2.808		
2.8	2.772	2.828	2.688	2.912		
2.9	2.871	2.929	2.784	3.016		
3.0	2.970	3.030	2.880	3.120		
3.1	3.069	3.131	2.976	3.224		
3.2	3.168	3.232	3.072	3.328		
3.3	3.267	3.333	3.168	3.432		
3.4	3.366	3.434	3.264	3.536		
3.5	3.465	3.535	3.360	3.640		
3.6	3.564	3.636	3.456	3.744		
3.7	3.663	3.737	3.552	3.848		
3.8	3.762	3.838	3.648	3.952		
3.9	3.861	3.939	3.744	4.056		
4.0	3.960	4.040	3.840	4.160		
4.1	4.059	4.141	3.936	4.264		
4.2	4.158	4.242	4.032	4.368		
4.3	4.257	4.343	4.128	4.472		
4.4	4.356	4.444	4.224	4.576		
4.5	4.455	4.545	4.320	4.680		
4.6	4.554	4.646	4.416	4.784		
4.7	4.653	4.747	4.512	4.888		
4.8	4.752	4.848	4.608	4.992		
4.9	4.851	4.949	4.704	5.096		
5.0	4.950	5.050	4.800	5.200		

NOMINAL	<e-0> Output Voltage</e-0>				
OUTPUT	Vout(E) (V)				
VOLTAGE	Ta=	25°C	-40°C≦T	a≦105°C	
V _{OUT(T)} (V)	MIN.	MAX.	MIN.	MAX.	
5.1	5.049	5.151	4.896	5.304	
5.2	5.148	5.252	4.992	5.408	
5.3	5.247	5.353	5.088	5.512	
5.4	5.346	5.454	5.184	5.616	
5.5	5.445	5.555	5.280	5.720	
5.6	5.544	5.656	5.376	5.824	
5.7	5.643	5.757	5.472	5.928	
5.8	5.742	5.858	5.568	6.032	
5.9	5.841	5.959	5.664	6.136	
6.0	5.940	6.060	5.760	6.240	
6.5	6.435	6.565	6.240	6.760	
7.0	6.930	7.070	6.720	7.280	
7.5	7.425	7.575	7.200	7.800	
8.0	7.920	8.080	7.680	8.320	
8.5	8.415	8.585	8.160	8.840	
9.0	8.910	9.090	8.640	9.360	
9.5	9.405	9.595	9.120	9.880	
10.0	9.900	10.100	9.600	10.400	
10.5	10.395	10.605	10.080	10.920	
11.0	10.890	11.110	10.560	11.440	
11.5	11.385	11.615	11.040	11.960	
12.0	11.880	12.120	11.520	12.480	
12.5	12.375	12.625	12.000	13.000	
13.0	12.870	13.130	12.480	13.520	
13.5	13.365	13.635	12.960	14.040	
14.0	13.860	14.140	13.440	14.560	
14.5	14.355	14.645	13.920	15.080	
15.0	14.850	15.150	14.400	15.600	
15.5	15.345	15.655	14.880	16.120	
16.0	15.840	16.160	15.360	16.640	
16.5	16.335	16.665	15.840	17.160	
17.0	16.830	17.170	16.320	17.680	
17.5	17.325	17.675	16.800	18.200	
18.0	17.820	18.180	17.280	18.720	

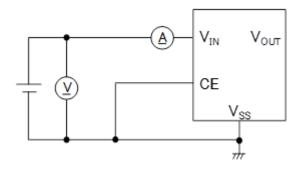
■電気的特性

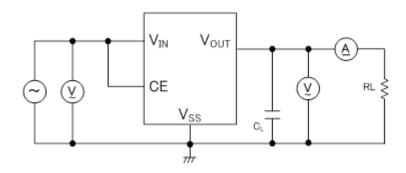

電圧別一覧表〈E-1〉

		<e< th=""><th>-1></th><th></th></e<>	-1>		
NOMINAL	Dropout Voltage				
OUTPUT	Vdif (mV) (I _{OUT} =100mA)				
VOLTAGE	To-	(louт = ¹ 25°C	1	a≦105°C	
V _{OUT(T)} (V)	TYP.	MAX.	TYP.	MAX.	
		l			
1.8	1480 1440	2700 2600	1480 1440	2700 2600	
2.0	1440		1440	2500	
2.0	1230	2500 2400	1230	2400	
2.1		2300		2300	
2.3	1090	2200	1090	2200	
2.4		2100		2100	
2.5	1030	2000	1030	2000	
2.6		1900		1900	
2.7	670	1800	670	1800	
2.8	460	1700	460	1700	
2.9		1600		1600	
3.0		1500		1500	
3.1	450	1400	450	1400	
3.2		1300		1300	
3.3		1200		1200	
3.4		1100	1	1100	
3.5		1000		1000	
3.6		900			
3.7		800			
3.8		700			
3.9		600			
4.0					
4.1	430		430		
4.2				900	
4.3				300	
4.4		530			
4.5					
4.6					
4.7					
4.8					
4.9					

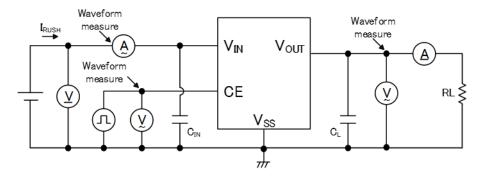

		, -	45			
NOMINAL			-1> Voltage			
OUTPUT		Vdif	(mV)			
VOLTAGE	(lout =100mA)					
		25℃	-40°C≦Ta≦105°C			
Vout(t) (V)	TYP.	MAX.	TYP.	MAX.		
5.0						
5.1						
5.2						
5.3						
5.4						
5.5						
5.6						
5.7						
5.8						
5.9						
6.0						
6.5						
7.0						
7.5						
8.0						
8.5						
9.0						
9.5	350	440	350	810		
10.0						
10.5						
11.0						
11.5						
12.0						
12.5						
13.0						
13.5						
14.0						
14.5						
15.0						
15.5						
16.0						
16.5						
17.0]					
17.5	1					
18.0	1					

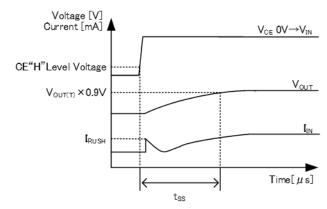
■測定回路図

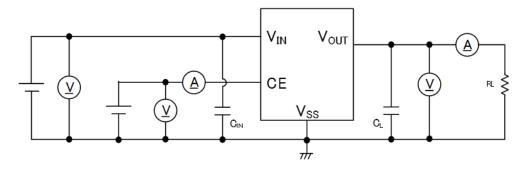

CIRCUIT(1)


CIRCUIT②

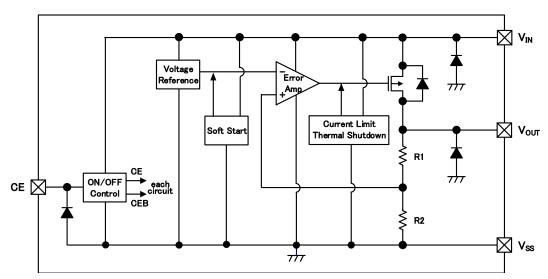
CIRCUIT3




CIRCUIT4


■測定回路図

CIRCUIT®



CIRCUIT®

■動作説明

XD6702 シリーズの出力電圧制御は、VouT端子に接続された R1 と R2 によって分割された電圧と内部基準電源の電圧を誤差増幅器で比較し、その出力信号で V_{IN}端子に接続されたドライバトランジスタを駆動し、出力電圧が安定するように負帰還をかけてコントロールしています。

*上記図のダイオードは静電保護用のダイオードと寄生ダイオードです。

〈電流制限、短絡保護〉

XD6702 シリーズは、電流制限 ILIM (460mA TYP.)・短絡保護 Ishort (115mA TYP.)としてフォールドバック(フの字)回路を内蔵しています。出力電流が制限電流に達すると出力電圧が降下すると共に出力電流が絞られる動作をします。

<過熱保護>

XD6702 シリーズは、過熱保護としてサーマルシャットダウン回路を内蔵しています。 ジャンクション温度が検出温度 T_{TSD} (150℃ TYP.)に達するとドライバトランジスタを強制的にオフさせます。 ドライバトランジスタがオフ状態を継続したままジャンクション温度が解除温度 T_{TSR} (140℃ TYP.)まで下がると ドライバトランジスタがオン状態となり(自動復帰)、再度レギュレーション動作を開始します。

ジャンクション温度を低下させる為の措置を取らない限り、ドライバトランジスタはオン、オフを繰り返し、 パルス状の波形が Vout 端子から出力されます。

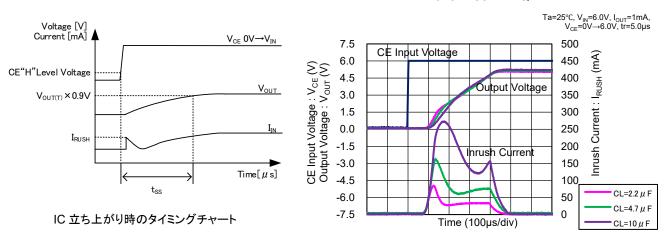
<CE 機能>

XD6702 シリーズは、CE 端子の信号により IC 内部の回路を停止することができます。

CE"L"レベル電圧を入力すると IC 停止状態となり、Vout 端子は R1、R2 により Pull-down され Vss レベルになります。 CE 端子に入力する電圧は CE 端子電圧規格内であれば論理は確定され動作に支障はありません。 また、CE 端子の OPEN は不定動作となりますので、OPEN 状態を避け、任意の固定電位として下さい。

■動作説明

<ソフトスタート>


XD6702 シリーズは、IC 起動時に出力コンデンサ(CL)をチャージする為に V_{IN} から V_{OUT} へ急峻に流れ込む 突入電流(I_{RUSH})を抑え、且つ、 I_{RUSH} による V_{IN} の変動を抑える事が可能です。

ソフトスタート時間(tss)は内部で最適化(370µs TYP.)されています。

尚、ソフトスタート時間は CE 端子に CE "H" レベル電圧以上が入力されてから、

出力電圧値が Vout(T)×0.9 以上になった時の時間です。

XD6702D501PR-Q

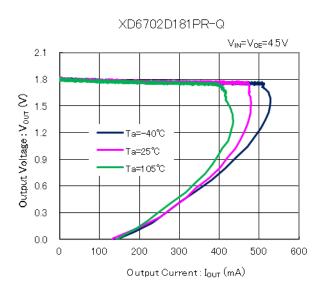
IC 立ち上がり時の突入電流波形例

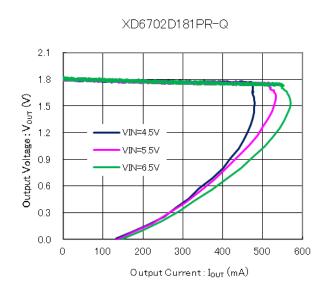
<低 ESR コンデンサ対応>

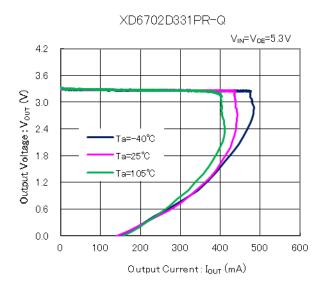
XD6702 シリーズは、低 ESR コンデンサを使用しても安定した出力電圧が得られるように IC 内部に位相補償回路を内蔵しています。必ず出力コンデンサ(C_L)を V_{OUT} 端子と V_{SS} 端子の直近に接続して下さい。また、入力電源安定化の為に入力コンデンサ(C_{IN})を V_{IN} 端子と V_{SS} 端子の直近に接続して下さい。接続する容量の推奨値は表.1 を参照して下さい。

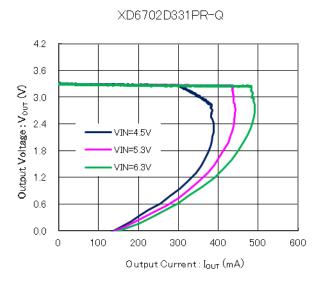
C_{IN}、C_L は使用するコンデンサのバイアス依存、温度特性などによる容量抜けの影響、また、ESR の影響で安定した位相補償が出来なくなる恐れがある為、使用するコンデンサの選定には十分ご注意下さい。尚、表.1 は実際にコンデンサが使用されるバイアス、温度条件下での容量の推奨値(MIN)を表します。従って、本製品を使用する全ての環境下において表 1 を満たす容量の選定をお願いします。

表 1: C_{IN}、C_L の推奨容量値(MIN)

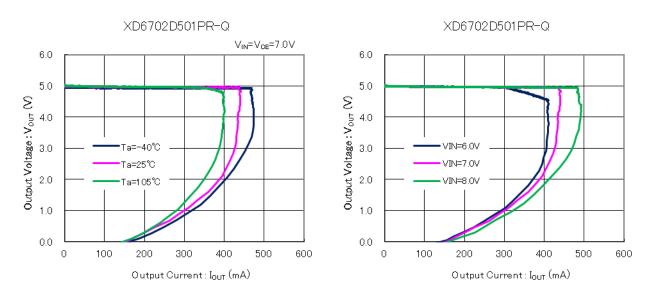

OUTPUT VOLTAGE	INPUT	OUTPUT
RANGE	CAPACITOR	CAPACITOR
$V_{OUT(T)}$	C _{IN}	C _L
1.8V ~ 18.0V	1.0µF	2.2µF


■使用上の注意


- 1) 一時的、過渡的な電圧降下および電圧上昇等の現象について、絶対最大定格を超える場合には、劣化または破壊する 可能性があります。
- 2) 配線のインピーダンスが高い場合、出力電流によるノイズの回り込みや位相ずれを起こしやすくなり、動作が不安定になることがあります。特に V_{IN} 及び Vss の配線は十分強化して下さい。
- 3) 入力コンデンサ(C_{IN})、出力コンデンサ(C_L) を接続する場合は、出来るだけ配線を短くして IC の近くに配置して下さい。
- 4) 入力コンデンサ(C_{IN})、出力コンデンサ(C_L) を使用する場合は、使用するコンデンサの DC バイアス依存、温度特性などによる 容量抜けの影響、また、ESR の影響で安定した位相補償が出来なくなる恐れがある為、使用するコンデンサの選定には十分 ご注意下さい。
- 5) 入力電圧の振幅が 5.0V 以上、且つ、スルーレートが 0.5V/µs 以上の場合、出力電圧のドロップが大きくなる事があります。 使用する条件下で出力電圧のドロップが気になる場合は、出力コンデンサ(C_L)を増やすなどして、十分評価の上ご使用下さい。
- 6) CE 端子オープンでは不定動作となります。 CE 端子は OPEN 状態を避け、任意の固定電位として下さい。
- 7) 出力コンデンサに大容量のコンデンサを使用すると、起動時に突入電流が発振する場合があります。
- 8) 出力電圧に 0V 未満の電圧が印加された状態で IC の立ち上げを行うと、IC が正常に起動しない場合があります。
- 9) 半導体部品は、放射線や宇宙線の被曝を受けると、電気的特性が変化する等の不具合に至る事があり、本 IC も例外ではありません。 組立、検査、使用時に、放射線/宇宙線の発生または被曝を受ける事が懸念される場合には、事前に当社までご連絡をお願いします。
- 10) 当社では製品の改善、信頼性の向上に努めております。 しかしながら、万が一のためにフェールセーフとなる設計およびエージング処理など、装置やシステム上で十分な安全設計を お願いします。

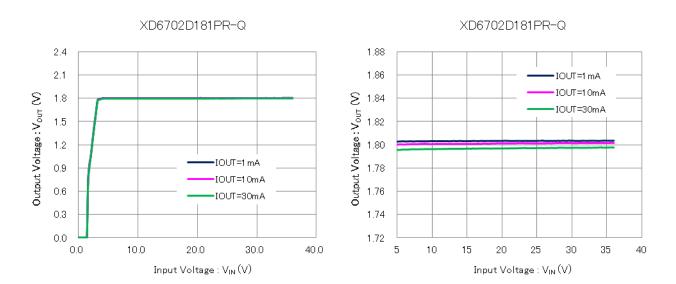

特に指定がない場合、Ta=25°C, $V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$, $I_{OUT}=1$ mA, $C_{IN}=1.0\mu$ F, $C_{L}=2.2\mu$ F (ceramic) とする。 但し、 $V_{IN}<4.5V$ となる場合は、 $V_{IN}=4.5$ V とする。

(1) Output Voltage vs. Output Current

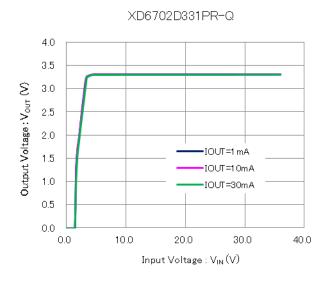


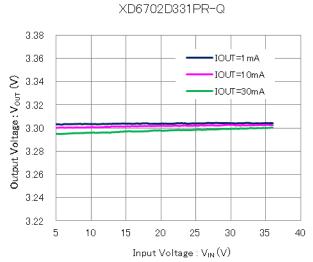
*実装時の放熱性の違いにより、サーマルシャットダウンが動作する場合があります。

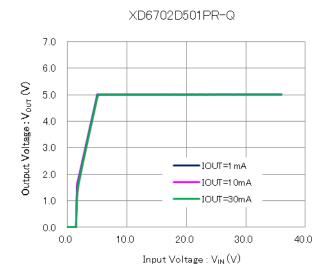
■特性例

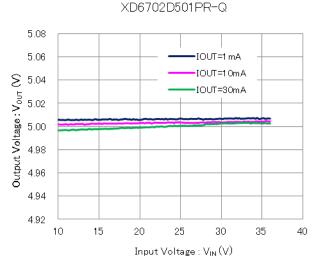

特に指定がない場合、Ta=25°C, $V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$, $I_{OUT}=1$ mA, $C_{IN}=1.0\mu$ F, $C_{L}=2.2\mu$ F (ceramic) とする。 但し、 $V_{IN}<4.5V$ となる場合は、 $V_{IN}=4.5$ V とする。

(1) Output Voltage vs. Output Current

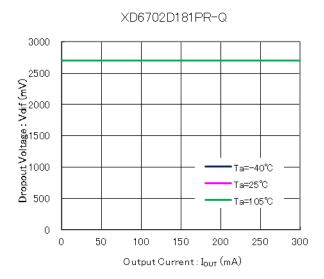

*実装時の放熱性の違いにより、サーマルシャットダウンが動作する場合があります。

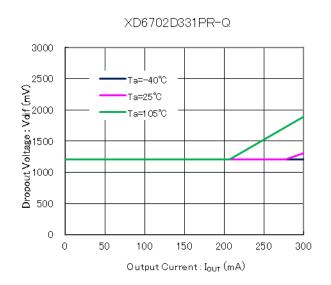

(2) Output Voltage vs. Input Voltage

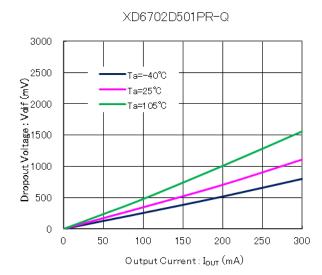



特に指定がない場合、Ta=25°C, $V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$, $I_{OUT}=1$ mA, $C_{IN}=1.0\mu$ F, $C_L=2.2\mu$ F (ceramic) とする。 但し、 $V_{IN}<4.5V$ となる場合は、 $V_{IN}=4.5$ V とする。

(2) Output Voltage vs. Input Voltage

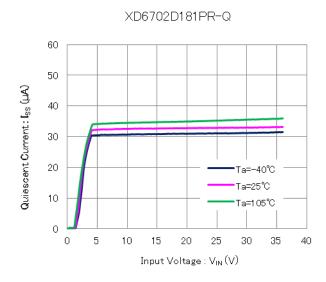


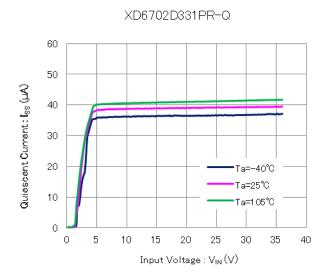


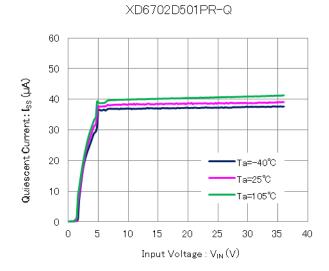

■特性例

特に指定がない場合、Ta=25°C, $V_{\text{IN}}=V_{\text{OUT(T)}}+1.0$ V, $V_{\text{CE}}=V_{\text{IN}}$, $I_{\text{OUT}}=1$ mA, $C_{\text{IN}}=1.0$ μ F, $C_{\text{L}}=2.2$ μ F (ceramic) とする。 但し、 $V_{\text{IN}}<4.5$ V となる場合は、 $V_{\text{IN}}=4.5$ V とする。

(3) Dropout Voltage vs. Output Current

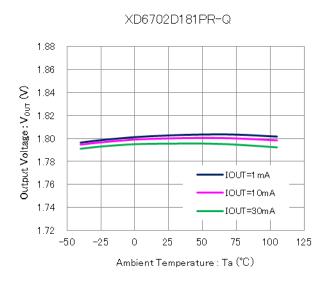


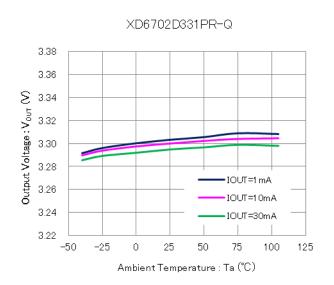


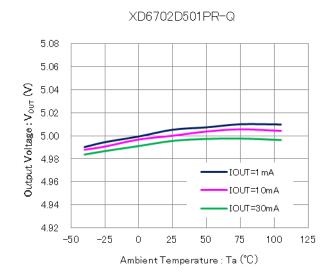

*実装時の放熱性の違いにより、サーマルシャットダウンが動作する場合があります。

特に指定がない場合、Ta=25 $^{\circ}$ C、 $V_{IN}=V_{OUT(T)}+1.0$ V、 $V_{CE}=V_{IN}$ 、 $I_{OUT}=1$ mA、 $I_{OUT}=1$ mA、 $I_{OUT}=1.0$ μ F、 $I_{OUT}=1.0$ μ F (ceramic) とする。

(4) Quiescent Current vs. Input Voltage

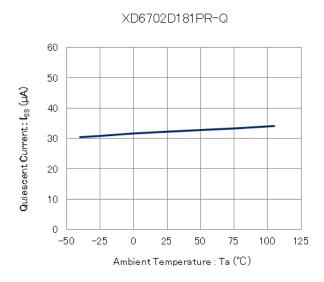


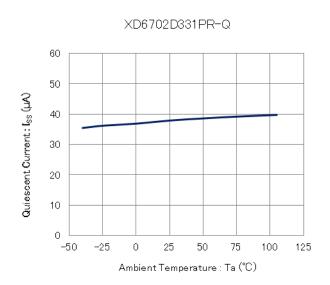


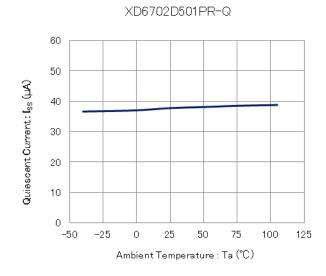

■特性例

特に指定がない場合、Ta=25 $^{\circ}$ C, $V_{\text{IN}}=V_{\text{OUT(T)}}+1.0$ V, $V_{\text{CE}}=V_{\text{IN}}$, $I_{\text{OUT}}=1$ mA, $C_{\text{IN}}=1.0$ μ F, $C_{\text{L}}=2.2$ μ F (ceramic) とする。 但し、 $V_{\text{IN}}<4.5$ V となる場合は、 $V_{\text{IN}}=4.5$ V とする。

(5) Output Voltage vs. Ambient Temperature

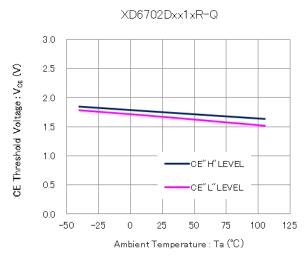


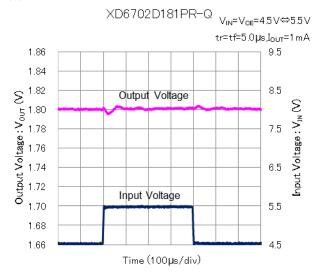


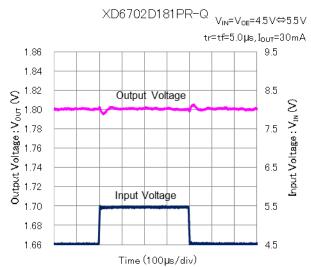


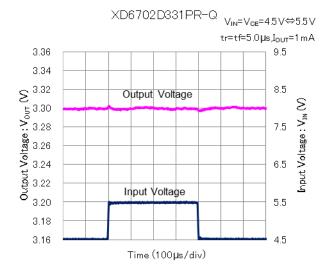
特に指定がない場合、Ta=25 $^{\circ}$ C, V_{IN} = $V_{\text{OUT(T)}}$ +1.0V, V_{CE} = V_{IN} , I_{OUT} =1mA, C_{IN} =1.0 μ F, C_{L} =2.2 μ F (ceramic) とする。 但し、 V_{IN} <4.5V となる場合は、 V_{IN} =4.5V とする。

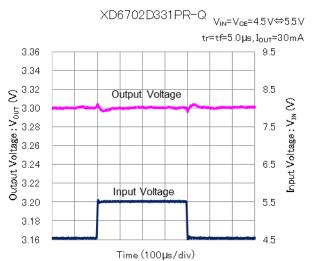
(6) Quiescent Current vs. Ambient Temperature



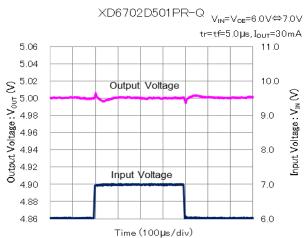

■特性例

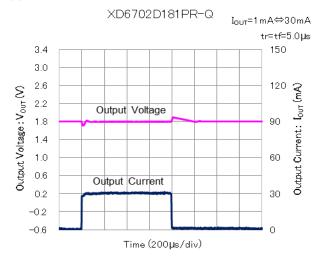

特に指定がない場合、Ta=25 $^{\circ}$ C、 $V_{IN}=V_{OUT(T)}+1.0$ V、 $V_{CE}=V_{IN}$ 、 $I_{OUT}=1$ mA、 $I_{OUT}=1$ mA、 $I_{OUT}=1.0$ F、 $I_{OUT}=1.0$ F (ceramic) とする。

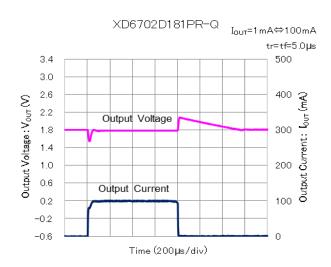

(7) CE Threshold Voltage vs. Ambient Temperature

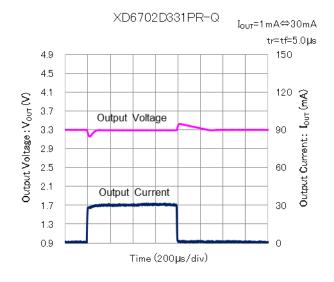


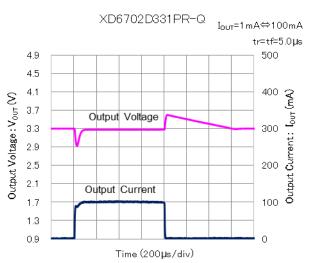
(8) Input Transient Response



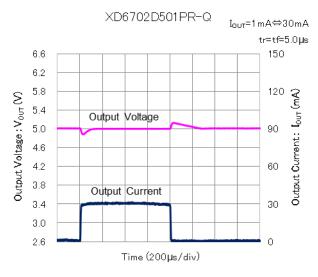

特に指定がない場合、Ta=25 $^{\circ}$ C、 $V_{IN}=V_{OUT(T)}+1.0$ V、 $V_{CE}=V_{IN}$ 、 $I_{OUT}=1$ mA、 $I_{OUT}=1$ mA、 $I_{OUT}=1.0$ μ F、 $I_{OUT}=1.0$ μ F (ceramic) とする。

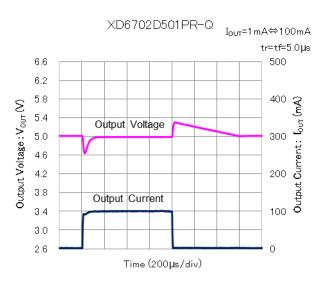

(8) Input Transient Response



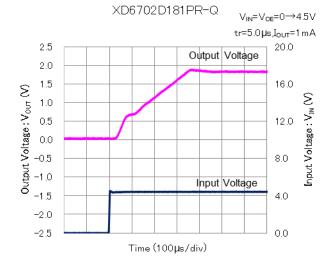


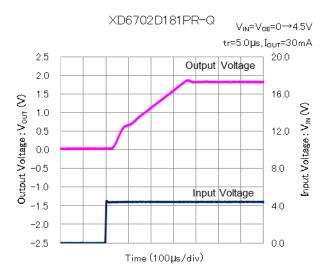
(9) Load Transient Response

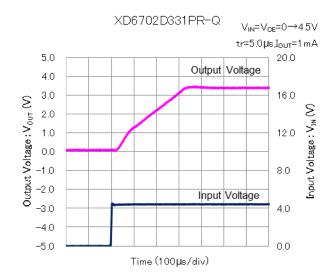


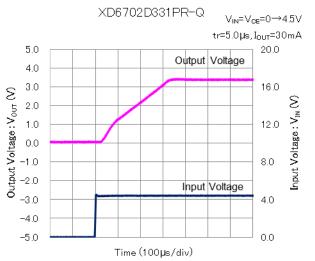


■特性例

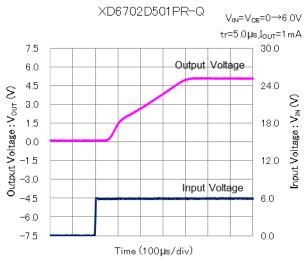

特に指定がない場合、Ta=25 $^{\circ}$ C, V_{IN} = $V_{OUT(T)}$ +1.0V, V_{CE} = V_{IN} , I_{OUT} =1mA, C_{IN} =1.0 μ F, C_L =2.2 μ F (ceramic) とする。 但し、 V_{IN} <4.5V となる場合は、 V_{IN} =4.5V とする。

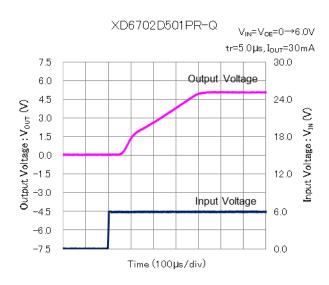

(9) Load Transient Response

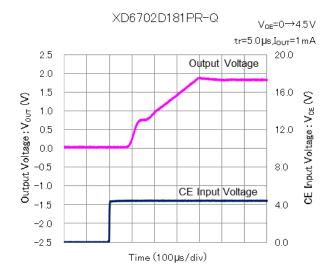


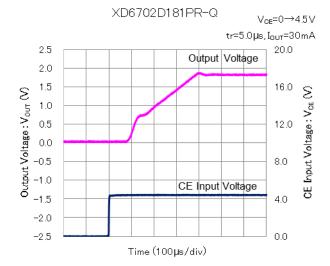


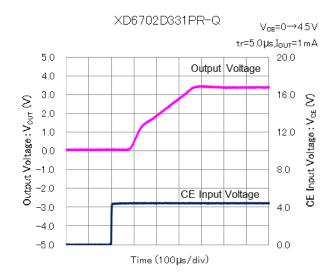
(10) Input Rising Response Time

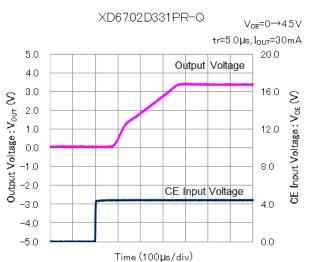




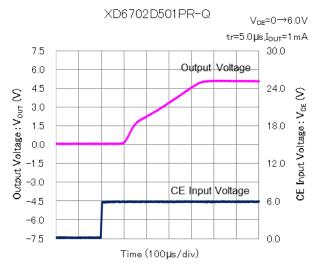

特に指定がない場合、Ta=25 $^{\circ}$ C、 V_{IN} = $V_{OUT(T)}$ +1.0V、 V_{CE} = V_{IN} , I_{OUT} =1mA、 C_{IN} =1.0 μ F, C_{L} =2.2 μ F (ceramic) とする。 但し、 V_{IN} <4.5Vとなる場合は、 V_{IN} =4.5Vとする。


(10) Input Rising Response Time

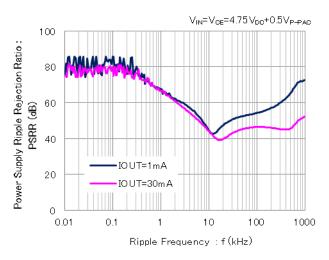




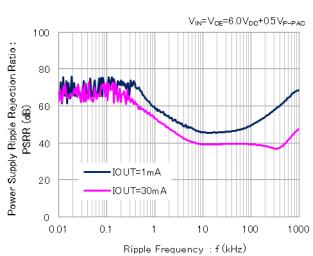
(11) CE Rising Response Time

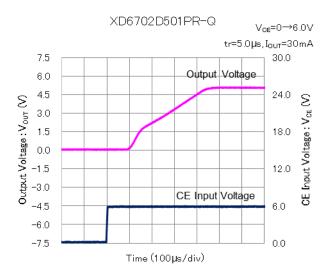


■特性例

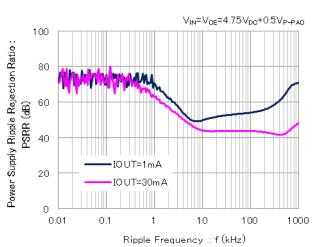

特に指定がない場合、Ta=25 $^{\circ}$ C, V_{IN} = $V_{\text{OUT(T)}}$ +1.0V, V_{CE} = V_{IN} , I_{OUT} =1mA, C_{IN} =1.0 μ F, C_{L} =2.2 μ F (ceramic) とする。 但し、 V_{IN} <4.5V となる場合は、 V_{IN} =4.5V とする。

(11) CE Rising Response Time




(12) Power Supply Ripple Rejection Ratio

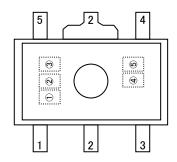
XD6702D181PR-Q



XD6702D501PR-Q

XD6702D331PR-Q

■パッケージインフォメーション


最新のパッケージ情報については www.torex.co.jp/technical-support/packages/ をご覧ください。

PACKAGE	OUTLINE / LAND PATTERN	THERMAL CHARACTERISTICS
SOT-89-5	<u>SOT-89-5 PKG</u>	SOT-89-5 Power Dissipation

■マーキング

●SOT-89-5

SOT-89-5

(mark header: ①~③) ※mark header は LOT によって変更無いマーク

① 製品シリーズを表す。

シンボル	品名表記例
L	XD6702*****-Q

② レギュレータのタイプ、出力電圧の組合せを表す。

© FILE FOR THE PROPERTY OF THE								
シンボル	出力電圧範囲[V]	品名表記例						
4	1.8~3.0							
5	3.1~6.0							
6	6.1~9.0	XD6702D*****-Q						
7	9.1~12.0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
С	12.1~15.0							
D	15.1~18.0							

③ 出力電圧を表す。

シンボル	VOLTAGE(V)					シンボル	VOLTAGE(V)						
0	-	3.1	6.1	9.1	12.1	15.1	F	1	4.6	7.6	10.6	13.6	16.6
1		3.2	6.2	9.2	12.2	15.2	Н	-	4.7	7.7	10.7	13.7	16.7
2	-	3.3	6.3	9.3	12.3	15.3	K	1.8	4.8	7.8	10.8	13.8	16.8
3	-	3.4	6.4	9.4	12.4	15.4	L	1.9	4.9	7.9	10.9	13.9	16.9
4	-	3.5	6.5	9.5	12.5	15.5	М	2.0	5.0	8.0	11.0	14.0	17.0
5	-	3.6	6.6	9.6	12.6	15.6	N	2.1	5.1	8.1	11.1	14.1	17.1
6	ı	3.7	6.7	9.7	12.7	15.7	Р	2.2	5.2	8.2	11.2	14.2	17.2
7	ı	3.8	6.8	9.8	12.8	15.8	R	2.3	5.3	8.3	11.3	14.3	17.3
8	-	3.9	6.9	9.9	12.9	15.9	S	2.4	5.4	8.4	11.4	14.4	17.4
9	-	4.0	7.0	10.0	13.0	16.0	Т	2.5	5.5	8.5	11.5	14.5	17.5
Α	-	4.1	7.1	10.1	13.1	16.1	U	2.6	5.6	8.6	11.6	14.6	17.6
В	-	4.2	7.2	10.2	13.2	16.2	V	2.7	5.7	8.7	11.7	14.7	17.7
С	-	4.3	7.3	10.3	13.3	16.3	X	2.8	5.8	8.8	11.8	14.8	17.8
D	-	4.4	7.4	10.4	13.4	16.4	Υ	2.9	5.9	8.9	11.9	14.9	17.9
Е	-	4.5	7.5	10.5	13.5	16.5	Z	3.0	6.0	9.0	12.0	15.0	18.0

4,5 製造ロットを表す。

01~09、0A~0Z、11~9Z、A1~A9、AA~AZ、B1~ZZ を繰り返す。 (但し、G, I, J, O, Q, W は除く。反転文字は使用しない。)

- 1. 本データシートに記載された内容(製品仕様、特性、データ等)は、改善のために予告なしに変更することがあります。製品のご使用にあたっては、その最新情報を当社または当社代理店へお問い合わせ下さい。
- 2. 本データシートに記載された内容は、製品の代表的動作及び特性を説明するものでありそれらの使用 に関連して発生した第三者の知的財産権の侵害などに関し当社は一切その責任を負いません。 又その使用に際して当社及び第三者の知的財産権の実施許諾を行うものではありません。
- 3. 本データシートに記載された製品或いは内容の情報を海外へ持ち出される際には、「外国為替及び外国貿易法」その他適用がある輸出関連法令を遵守し、必要な手続きを行って下さい。
- 4. 本製品は、1)原子力制御機器、2)航空宇宙機器、3)医療機器、4)車両・その他輸送機器、5)各種安全装置及び燃焼制御装置等々のように、その機器が生命、身体、財産等へ重大な損害を及ぼす可能性があるような非常に高い信頼性を要求される用途に使用されることを意図しておりません。ただし、弊社が車載用等の用途を指定する場合を除きます。また車載用等使用の場合、弊社の事前の書面による許可なくして使用しないでください。
- 5. 当社は製品の品質及び信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生します。 故障のために生じる人身事故、財産への損害を防ぐためにも設計上のフェールセーフ、冗長設計及び延焼対策にご留意をお願いします。
- 6. 本データシートに記載された製品には耐放射線設計はなされておりません。
- 7. 保証値を超えた使用、誤った使用、不適切な使用等に起因する損害については、当社では責任を負いかねますので、ご了承下さい。
- 8. 本データシートに記載された内容を当社の事前の書面による承諾なしに転載、複製することは、固くお断りします。

トレックス・セミコンダクター株式会社