JTR28001-018

コイルー体型降圧 DC/DC コンバータ(micro DC/DC)

☆GreenOperation 対応

■概要

XCL205/XCL206/XCL207 シリーズは、コイルと制御 IC を一体化した超小型(2.5mm×2.0mm, h=1.0mm)降圧 DC/DC コンバータです。外付けにセラミックコンデンサを 2 個追加するだけで、最大負荷電流 600mA の電源を構成できます。

動作電圧は $2.0V\sim6.0V(XCL20xG:1.8V\sim6.0V)$ 。出力電圧は $0.8\sim4.0V$ まで 0.05V ステップで設定可能です。制御 IC はスイッチング周波数 3MHz で動作し、 0.42Ω Pch ドライバ Tr.および 0.52Ω Nch スイッチ Tr.を内蔵した同期整流方式です。動作モードは、PWM 制御(XCL205)、PWM/PFM 自動切替え制御(XCL206)、制御方式マニュアル切替え(XCL207)の 3 タイプから選択ができます。軽負荷から重負荷までの全負荷領域で自在に高速応答、低リップル、高効率を実現し、スタンバイ時には全回路を停止することにより消費電流を 1.0μ A 以下に抑えます。また、UVLO(Under Voltage Lock Out)機能を内蔵しており、入力電圧が 1.4V 以下では内部ドライバ Tr.を強制的にオフさせます。

XCL205B(G,F)/XCL206B(G,F)/XCL207B(G,F)シリーズでは、高速ソフトスタート機能として 0.25ms で出力電圧を立ち上げます。 XCL205B(C,G,F) /XCL206B(C,G,F) / XCL207B(C,G,F)シリーズでは、 C_L ディスチャージ機能によりスタンバイ時に L_X - V_S s 間の内部スイッチをオンさせることにより内部抵抗を介して負荷容量 C_L の電荷をディスチャージします。このディスチャージ機能により、出力電圧を高速に V_S s レベルまで戻すことが可能です。

■用途

- ●携帯電話
- ●Bluetooth 機器
- ●PDA、携帯情報端末
- ●携帯ゲーム機
- ●デジタルカメラ
- ●ビデオカメラ

■特長

超小型(コイル含む) : 2.5mm x 2.0mm, h=1.0mm 入力電圧範囲 : 2.0V ~ 6.0V (A/B/C タイプ)

: 1.8V ~ 6.0V (G/F タイプ)

出力電圧範囲 : 0.8V ~ 4.0V (±2.0%)

高効率 : 90% (V_{IN}=4.2V, V_{OUT}=3.3V)

出力電流 : 600mA

発振周波数: 3.0MHz (±15%)

最大デューティ比 : 100%

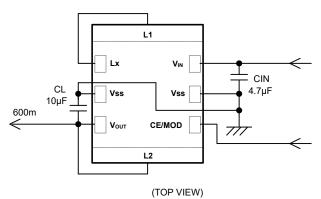
コンデンサ : セラミックコンデンサ対応

CE 機能 : H アクティブ

ソフトスタート回路内蔵 C」高速ディスチャージ

保護回路制御:電流制限回路内蔵(定電流+ラッチ)

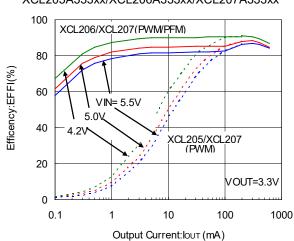
: PWM 固定制御 (XCL205)


PWM/PFM 自動切替え制御 (XCL206) 制御方式マニュアル切替え (XCL207)

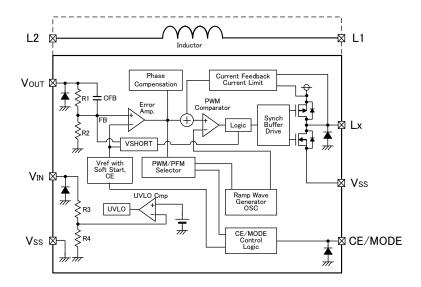
動作周囲温度 :-40℃~85℃

環境への配慮: EU RoHS 指令対応、鉛フリー

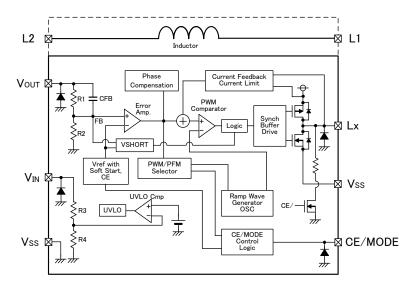
■代表標準回路


A/B/C/G タイプ

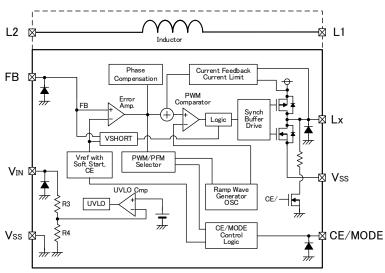
(注意)『L1 と Lx』及び『L2 と Vour』は基板配線で接続します。


■ 代表特性例

XCL205A333xx/XCL206A333xx/XCL207A333xx



■ブロック図


1) A タイプ

2) B/C/G タイプ

3) F タイプ

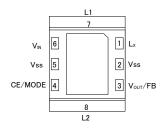
注) XCL205 シリーズは"CE/MODE Control Logic"から"PWM/PFM Selector"への信号が内部にて"L"レベルに固定されており、PWM 制御のみ選択。 XCL206 シリーズは"CE/MODE Control Logic"から"PWM/PFM Selector"への信号が内部にて"H"レベルに固定されており、PWM/PFM 自動切替え制御のみ選択。

上記図のダイオードは静電保護素子、寄生ダイオードになります。

■製品分類

●品番ルール

XCL205①23456-⑦(*1) PWM 固定制御


XCL206①②③④⑤⑥-⑦(*1) PWM/PFM 自動切替え制御

XCL207①②③④⑤⑥-⑦(*1) 制御方式マニュアル選択、PWM 固定制御⇔PWM/PFM 自動切替え制御(セミカスタム品)

記号	項目		シンボル	説明
			Α	V _{IN} ≧2.0V、標準ソフトスタート、C _L ディスチャージ無し
		出力電圧固定 出力電圧固定	В	V _{IN} ≧2.0V、高速ソフトスタート、C _L ディスチャージ付き
1	機能選択	四万电江回足	С	V _{IN} ≧2.0V、標準ソフトスタート、C _L ディスチャージ付き
			G	V _{IN} ≧1.8V、高速ソフトスタート、C _L ディスチャージ付き
		出力電圧外部設定	F	V _{IN} ≧1.8V、高速ソフトスタート、C _L ディスチャージ付き
23	出力電圧固定		0 ~ 9, A ~ M	出力電圧部を表す。 例)2.8V 出力の場合 → ② = 2 ③ = 8 50mV ステップ: 例)2.85V 出力の場合 → ② = 2 ③ = L 0.05=A, 0.15=B, 0.25=C, 0.35=D, 0.45=E, 0.55=F, 0.65=H, 0.75=K, 0.85=L, 0.95=M
	出力電圧外部設定		08	基準電圧を表す FB=0.8V
4	発振周波数		3	3.0MHz
E-7	18mH		AR-G (*2)	CL-2025 (3,000pcs/Reel)
\$6-⑦ パッケー		一ジ (発注単位)	CR-G (*3)	CL-2025-02 (3,000pcs/Reel)

^{(*1) &}quot;-G"は、ハロゲン&アンチモンフリーかつ EU RoHS 対応製品です。

■端子配列

(BOTTOM VIEW)

- ※Vss(2番端子及び5番端子)は必ず GND 接続して下さい。
- ※放熱板は放熱や実装強度の問題で回路に接続する場合は GND 接続して下さい。
- ※接続方法については使用方法内の基板レイアウト参照して下さい。

^(*2) AR-G は保存温度範囲が"-40 ~ 105℃"の製品となります。

^(*3) CR-G は保存温度範囲が"-40~125°C"の製品となります。

■端子説明

PIN NUMBER	PIN NAME	FUNCTIONS		
1	L _X	Switching Output		
2,5	Vss	Ground		
3	Vout	Fixed Output Voltage Pin (A/B/C/G types)		
S	FB	Output Voltage Sense Pin (F type)		
4	CE / MODE	High Active Enable / Mode Selection Pin		
6	V _{IN}	Power Input		
7	L1	Inductor Electrodes		
8	L2	inductor Electrodes		

■機能表

CE/MODE		動作状態		
電圧レベル	XCL205	XCL205 XCL206 XC		
H レベル ^(*1)	同期整流 PWM 固定	同期整流 PWM/PFM 自動切替え	同期整流 PWM/PFM 自動切替え	
M レベル(*2)	-	-	同期整流 PWM 固定	
L レベル(*3)	スタンバイ状態	スタンバイ状態	スタンバイ状態	

※注意 CE/MODE 端子電圧レベル範囲

- $^{(1)}$ H レベル: 0.65V \leq H レベル \leq 6V (XCL205,XCL206) H レベル: V_{IN} -0.25V \leq H レベル \leq V_{IN} (XCL207)
- $^{(^*2)}$ M レベル: $0.65V \leq M$ レベル $\leq V_{\text{IN}}\text{-}1.0V$
- $^{(*3)}$ L レベル:0V \leq L レベル \leq 0.25V
- (*4) CE/MODE 端子は、動作が不安定になるためオープン状態にしないで下さい。

■絶対最大定格

項	項目		定格	単位
V _{IN} 端-	子電圧	V _{IN}	-0.3 ~ 6.5	V
Lx端子	子電圧	V_{LX}	-0.3 ~ V _{IN} + 0.3	V
Vout 端子電圧(タイプ A,B,C,G)	Vout	-0.3 ~ 6.5	V
V _{FB} 端子電	V _{FB} 端子電圧(タイプ F)		-0.3 ~ 6.5	V
CE/MODE	端子電圧	V _{CE}	-0.3 ~ 6.5	V
Lx 端-	子電流	ILx	±1500	mA
許容損失 (Ta=25°C)	CL2025 CL2025-02	Pd	1000 (40mm x 40mm 標準基板) ^(*1)	mW
動作周囲温度		Topr	Topr -40 ~ 85	
归 左归库(*2)	CL2025	Taka	-40 ~ 105	°C
保存温度 ^(*2)	CL2025-02	Tstg	-40 ~ 125	U

^(*1) 基板実装時の許容損失の参考データとなります。実装条件はパッケージインフォメーションをご参照下さい。

^(*2) 保存温度は、パッケージの製品仕様によって分けられております。

■電気的特性

XCL205Axx3AR/XCL206Axx3AR/XCL207Axx3AR/XCL205Axx3CR/XCL206Axx3CR/XCL207Axx3CR

Ta=25°C

-7.5	== D			規格値		22/11		
項目	記号	測定条件		TYP. MAX.		単位	回路図	
出力電圧	V _{OUT}	外付け部品接続, V _{IN} =V _{CE} =5.0V, I _{OUT} =30mA	<e-1></e-1>	<e-2></e-2>	<e-3></e-3>	V	1	
動作電圧範囲	V _{IN}		2.0	-	6.0	V	1	
最大出力電流	I _{OUTMAX}	V _{IN} =V _{OUT(T)} +2.0V, V _{CE} =1.0V, 外付け部品接続 ^(*9)	600		-	mA	1	
UVLO 電圧	V _{UVLO}	V _{CE} =V _{IN} , V _{OUT} =0V, L _X 端子が"L"レベル保持となる電圧 ^(*1) , (**11)	1.00	1.40	1.78	V	3	
消費電流(XCL205)		V V 50VV V44	-	46	65		<u> </u>	
消費電流(XCL206, XCL207)	l _{DD}	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 1.1$	-	21	35	μA	2	
スタンバイ電流	I _{STB}	V _{IN} =5.0V, V _{CE} =0V, V _{OUT} =V _{OUT(T)} ×1.1	-	0	1.0	μA	2	
発振周波数	f _{osc}	外付け部品接続, V _{IN} =V _{OUT(T)} +2.0V, V _{CE} =1.0V, I _{OUT} =100mA	2550	3000	3450	kHz	1	
PFM スイッチ電流(*12)	I _{PFM}	外付け部品接続, V _{IN} =V _{OUT(T)} +2.0V, V _{CE} =V _{IN} , I _{OUT} =1mA	<e-4></e-4>	<e-5></e-5>	<e-6></e-6>	mA	10	
PFM デューティ制限 ^(*12)	DTY _{LIMIT_PFM}	$V_{CE} = V_{IN} = V_{OUT(T)} + 1.0V$, $I_{OUT} = 1mA$	-	200	300	%	1	
最大デューティ比	MAXDTY	$V_{IN} = V_{CE} = 5.0V$, $V_{OUT} = V_{OUT(T)} \times 0.9$	100	-	-	%	3	
最小デューティ比	MINDTY	V _{IN} =V _{CE} =5.0V, V _{OUT} =V _{OUT(T)} ×1.1	-	-	0	%	3	
効率 ^(*2)	EFFI	外付け部品接続, V _{CE} =V _{IN} =V _{OUT(T)} +1.2V, I _{OUT} =100mA	-	<e-7></e-7>	-	%	1	
L _x SW "H" ON 抵抗 1	$R_{L_{\times}H}$	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = 0V, IL_X = 100 \text{mA}^{(*3)}$	-	0.35	0.55	Ω	4	
L _x SW "H" ON 抵抗 2	$R_{L \times H}$	$V_{IN} = V_{CE} = 3.6V$, $V_{OUT} = 0V$, $IL_X = 100 \text{mA}^{(*3)}$	-	0.42	0.67	Ω	4	
L _x SW "L" ON 抵抗 1	$R_{L \times L}$	$V_{IN} = V_{CE} = 5.0V^{(*4)}$	-	0.45	0.65	Ω	-	
L _x SW "L" ON 抵抗 2	$R_{L \times L}$	$V_{IN} = V_{CE} = 3.6V^{(*4)}$	-	0.52	0.77	Ω	-	
L _x SW "H" リーク電流 ^(*5)	I _{LEAKH}	$V_{IN} = V_{OUT} = 5.0V$, $V_{CE} = 0V$, $L_X = 0V$	-	0.01	1.0	μΑ	<u>(5)</u>	
L _X SW "L" リーク電流 ^(*5)	I _{LEAKL}	$V_{IN} = V_{OUT} = 5.0V, V_{CE} = 0V, L_X = 5.0V$	-	0.01	1.0	μA	5	
電流制限(*10)	I _{LIM}	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT}(T) \times 0.9^{(*8)}$	900	1050	1350	mA	6	
出力電圧温度特性	$\triangle V_{OUT}/$ ($V_{OUT} \cdot \triangle Topr$)	I _{OUT} =30mA -40°C≦Topr≦85°C	-	±100	-	ppm/ °C	1	
CE "H" 電圧	V_{CEH}	V _{OUT} = V _{OUT(T)} x0.4, V _{CE} に電圧印加 L _x が"H"となる 電圧 ^(*11)	0.65	-	6.0	V	3	
CE "L" 電圧	V _{CEL}	V _{OUT} = V _{OUT(T)} x0.4 V _{CE} に電圧印加 L _X が"L"となる電圧(* ¹¹⁾	V_{SS}	-	0.25	V	3	
PWM "H" レベル電圧 ^(*13)	V_{PWMH}	外付け部品接続, l _{out} =1mA ^(*6) 発振周波数が 2550kHz≦f _{osc} ≦3450kHzとなる電圧	-	-	V _{IN} - 1.0	V	1	
PWM "L" レベル 電圧(*13)	V_{PWML}	外付け部品接続, I _{OUT} =1mA ^(*6) 発振周波数が f _{osc} <2550kHz となる電圧	V _{IN} - 0.25	-	-	V	1	
CE "H" 電流	I _{CEH}	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 0.9$	-0.1	0.0	0.1	μΑ	(5)	
CE "L" 電流	I _{CEL}	$V_{IN} = 5.0V, V_{CE} = 0V, V_{OUT} = V_{OUT(T)} \times 0.9$	-0.1	0.0	0.1	μA	(5)	
ソフトスタート時間	t _{ss}	V_{IN} = V_{CE} =5.0V, V_{OUT} =0.8× $V_{\text{OUT}(T)}$, 抵抗 1 Ω にて L_X 短絡 $^{(7)}$	0.5	0.9	2.5	ms	1	
ラッチ時間	t _{LAT}	V _{OUT} を SWEEP し V _{IN} = V _{CE} = 5.0V,抵抗 1Ω にて Lx 短絡、1ms 以内に L _x =L となるときの V _{OUT} 電圧	1.0	ı	20	ms	7	
短絡保護閾値電圧	V _{SHORT}		<e-8></e-8>	<e-9></e-9>	<e-10></e-10>	V	7	
インダクタンス値	L	Test frequency =1MHz	-	1.5	-	μΗ	-	
コイル許容電流	I _{DC}	ΔT =40°C	-	1000	-	mA	-	

測定条件:特に指定無き場合、 V_{IN} =5.0V, $V_{OUT(T)}$ =設定電圧、印加端子の順番は $V_{OUT}
ightarrow V_{IN}
ightarrow V_{CE}$

^(*1) ヒステリシス動作電圧幅を含む

^(*2) FFI = {[(出力電圧)×(出力電流)]÷[(入力電圧)×(入力電流)]}×100

^(*3) ON 抵抗 = (V_{IN} - L_X端子測定電圧) / 100mA

^(*4) 設計値

^(*5) 高温時においては最大 10µA 程度リークする場合があります。

^{(&}lt;sup>'6)</sup> XCL207 シリーズは CE/MODE が PWM 制御と PWM/PFM 自動切替え制御の外部切替え端子となっております。

動作状態にて CE/MODE 端子が V_{IN} - 0.3V 以上では PWM/PFM 自動切替え制御、V_{IN} - 1.0V 以下で V_{CEH}以上では PWM 制御を行います。

 $^{^{(7)}}$ 動作状態から V_{OUT} に抵抗 1Ω を介して GND に短絡させ、電流制限パルス発生から L_X =0V となるまでの時間

 $^{^{(*8)}}$ ON 抵抗による電圧降下の為、 V_{IN} < 2.4V では電流制限に達しない場合があります。

^(*9) 入出力電圧差(降圧差)が小さい場合、最大電流に到達する前に、100%duty となることがあります。 100%duty 状態からさらに電流を引くと Pch MOS ドライバ Tr.の ON 抵抗により出力電圧の降下を起こします。

 $^(^{*10})$ 電流制限はコイルに流れる電流のピークの検出レベルを示す。

 $^{^{(*11)}}$ "H" = $V_{IN} \sim V_{IN}$ - 1.2V, "L" = + 0.1V \sim - 0.1V

^(*12) I_{PFM} および DTY_{LIMIT_PFM} は XCL206/XCL207 シリーズの PFM 制御時の機能になります(XCL205 シリーズ対象外)。

^(*13) V_{PWMH} および V_{PWML} は XCL207 シリーズの機能になります(XCL205/XCL206 対象外)。

■電気的特性

XCL205Bxx3AR/XCL206Bxx3AR/XCL207Bxx3AR/XCL205Bxx3CR/XCL206Bxx3CR/XCL207Bxx3CR

Ta=25°C

田力電圧 Vour 外付け部品接続、V _N =Vour(n) + 2.0V、 lour = 5.0V、 lour = 5.0V、 lour = 5.0V、 lour = 5.0V lour = 5.			規格値			W / I		
動作電圧範囲 V _N V _N = V _{ORT} Y _{ORT} Y ± 2.0V, V _{CE} = 1.0V, 外付け部品接続 ^(N) 600 mA ① ① 1.0V 位 電圧 V _{ORT} V _{ORT} Y × V _{ORT} = 0.0V, V _{ORT} = 0.0V, V _{ORT} = 0.0V, V _{ORT} = 0.0V, V _{ORT} = 0.0V × (1.00	項目	記号	測定条件	MIN.	TYP.	MAX.	単位	回路図
展大出力電流	出力電圧	V_{OUT}	外付け部品接続, V _{IN} =V _{CE} =5.0V, I _{OUT} =30mA	<e-1></e-1>	<e-2></e-2>	<e-3></e-3>	V	1
UVLO 電圧	動作電圧範囲	V_{IN}		2.0	-	6.0	V	1
	最大出力電流	I _{OUTMAX}	V _{IN} =V _{OUT(T)} +2.0V, V _{CE} =1.0V, 外付け部品接続 ^(*9)	600	-	-	mA	1
お食電流(XCL206, XCL207)	UVLO 電圧	V _{UVLO}		1.00	1.40	1.78	V	3
スタンバイ電流 ISTB V _N = 5.0V, V _{OLT} = V _{OLTT} ×1.1 - 0 1.0 μA ②	消費電流(XCL205)		V V 50VV V 44	-	46	65		0
解析 特別	消費電流(XCL206, XCL207)	I _{DD}	$V_{IN} = V_{CE} = 5.0V$, $V_{OUT} = V_{OUT(T)} \times 1.1$		21	35	μΑ	(2)
解析 特別	スタンバイ電流	I _{STB}	V _{IN} =5.0V, V _{CE} =0V, V _{OUT} =V _{OUT(T)} ×1.1	-	0	1.0	μΑ	2
FFM メンチューティ制限	発振周波数	f _{osc}	外付け部品接続, V _{IN} =V _{OUT(T)} +2.0V, V _{CE} =1.0V, I _{OUT}	2550	3000	3450	kHz	1
最大デューティ比 MAXDTY V _N = V _{CE} = 5.0V, V _{OUT} = V _{OUT(T)} ×0.9 100 % 3 最小デューティ比 MINDTY V _N = V _{CE} = 5.0V, V _{OUT} = V _{OUT(T)} ×1.1 - 0 % 3 か率 ⁽²⁾ EFFI 100mA - <	PFM スイッチ電流(*12)	I _{PFM}		<e-4></e-4>	<e-5></e-5>	<e-6></e-6>	mA	10
展小デューティ比 MINDTY V _N = V _{CE} = 5.0V, V _{OUT} = V _{OUT(T)} × 1.1 0 % ③	PFM デューティ制限(*12)	DTY _{LIMIT_PFM}	$V_{CE}=V_{IN}=V_{OUT(T)}+1.0V, \overline{I_{OUT}=1mA}$	_	200	300	%	1
BFFI	最大デューティ比	MAXDTY	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 0.9$	100	-	-	%	3
Like Mith On M抵抗1 Riket Vin = Volume = 0.0, illim = 100mA - Vin = Volume = 0.0, illim = 100mA - Vin = Volume = 0.0, illim = 100mA - 0.0, illim = 0.0, illim = 100mA - 0.0, illim = 0.0, illi	最小デューティ比	MINDTY	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 1.1$	-	-	0	%	3
L _x SW"H" ON 抵抗2	効率(*2)	EFFI	` '	-	<e-7></e-7>	-	%	1
L _X SW"L"ON抵抗1 R _{L×L} V _{IN} = V _{CE} = 5.0V (*4) - 0.45 0.65 Ω - 1	L _x SW "H" ON 抵抗 1	$R_{L \times H}$		•	0.35	0.55	Ω	4
L _x SW"L" ON 抵抗2 R _{L×L} V _{IN} =V _{CE} = 3.6V ("4) - 0.52 0.77 Ω - 0.25		$R_{L \times H}$		-	0.42	0.67	Ω	4
L_XSW "H" "Jーク電流"5)				•	0.45			-
電流制限(*10)		$R_{L \times L}$		-	0.52	0.77	Ω	
出力電圧温度特性		I _{LEAKH}		-	0.01	1.0	μΑ	9
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	電流制限(*10)			900	1050	1350	mA	6
電圧(**11)	出力電圧温度特性	$\triangle V_{OUT}/(V_{OUT} \cdot \triangle Topr)$	-40°C≦Topr≦85°C	-	±100	-	ppm/ °C	1
PWM "H" レベル電圧("13)	CE "H" 電圧	V_{CEH}	電圧(*11)	0.65	-	6.0	V	3
PWM "L" レベル 電圧(*13)	CE "L" 電圧	V_{CEL}	電圧(*11)	V_{SS}	-	0.25	V	3
FVMM*L** VPMML	PWM "H" レベル電圧 ^(*13)	V_{PWMH}	2550kHz≦f _{osc} ≤3450kHz となる電圧	-	-	V _{IN} - 1.0	V	1
CE "L" 電流		V_{PWML}	fosc < 2550kHz となる電圧		-	-	V	
ソフトスタート時間 t _{SS} 外付け部品接続, V _{CE} =0V → V _{IN} , I _{OUT} =1mA - <e-11> <e-12> ms ① ラッチ時間 t_{LAT} V_{IN} =V_{CE} =5.0V, V_{OUT} = 0.8×V_{OUT(T)} 抵抗 1Ω にて L_X</e-12></e-11>		I _{CEH}					μΑ	
ラッチ時間 t _{LAT} V _{IN} = V _{CE} = 5.0V, V _{OUT} = 0.8×V _{OUT(T)} 抵抗 1Ω にて L _X 短絡 ⁽⁷⁾ 1.0 - 20 ms ⑦ 短絡保護閾値電圧 V _{SHORT} V _{OUT} を SWEEP L V _{IN} = V _{CE} = 5.0V, 抵抗 1Ω にて L _X 短絡、1ms 以内に L _X = L となるときの V _{OUT} 電圧 <e-8> <e-9> <e-10> V ⑦ C_L 放電抵抗 R_{DCHG} V_{IN} = 5.0V, L_X = 5.0V, V_{CE} = 0V, V_{OUT} = open 200 300 450 Ω ® インダクタンス値 L Test frequency = 1MHz - 1.5 - μH -</e-10></e-9></e-8>	-:	I _{CEL}						$\overline{}$
短絡保護閾値電圧 V _{SHORT} V _{OUT} を SWEEP L V _{IN} =V _{CE} = 5.0V,抵抗 1Ω にて L _X 短絡、1ms 以内に L _X = L となるときの V _{OUT} 電圧 <e-8> <e-9> <e-10> V ⑦ の の の の の の の の の の の の の の の の の の</e-10></e-9></e-8>	ソフトスタート時間	t _{ss}		-	<e-11></e-11>	<e-12></e-12>	ms	1
短給保護阈値電圧 VshORT 短絡、1ms 以内に L _X =L となるときの V _{OUT} 電圧 <-E-8 <-E-9 <-E-10 V	ラッチ時間	t _{LAT}	短絡 ^(*7)	1.0	-	20	ms	7
インダクタンス値 L Test frequency =1MHz - 1.5 - μH -		V _{SHORT}	短絡、1ms 以内に L _x =L となるときの V _{OUT} 電圧	<e-8></e-8>	<e-9></e-9>	<e-10></e-10>	V	
		R _{DCHG}	V_{IN} =5.0V, L_X =5.0V, V_{CE} =0V, V_{OUT} =open	200	300	450	Ω	8
コイル許容電流 I _{DC} ΔT =40℃ - 1000 - mA -	インダクタンス値	L	Test frequency =1MHz	-	1.5	-	μH	-
	コイル許容電流	I _{DC}	ΔT =40°C	-	1000	-	mA	-

測定条件:特に指定無き場合、VIN =5.0V, VOUT(T)=設定電圧、印加端子の順番は VOUT→VIN→VCE

^(*1)ヒステリシス動作電圧幅を含む

^(*2) EFFI = {[(出力電圧)×(出力電流)]÷[(入力電圧)×(入力電流)]}×100

^(*3) ON 抵抗 = (V_{IN} - L_X 端子測定電圧) / 100mA

^(*4) 設計値

^(*5) 高温時においては最大 10µA 程度リークする場合があります。

^(*6) XCL207 シリーズは CE/MODE が PWM 制御と PWM/PFM 自動切替え制御の外部切替え端子となっております。

動作状態にて CE/MODE 端子が $V_{
m IN}$ - 0.3V 以上では PWM/PFM 自動切替え制御、 $V_{
m IN}$ -1.0V 以下で $V_{
m CEH}$ 以上では PWM 制御を行います。

 $^{^{(17)}}$ 動作状態から V_{OUT} に抵抗 1Ω を介して GND に短絡させ、電流制限パルス発生から L_X =0V となるまでの時間

 $^{^{(^{*8})}}$ ON 抵抗による電圧降下の為、 V_{IN} < 2.4V では電流制限に達しない場合があります。

^(*9) 入出力電圧差(降圧差)が小さい場合、最大電流に到達する前に、100%duty となることがあります。

^{100%}duty 状態からさらに電流を引くと Pch ドライバ Tr.のオン抵抗により出力電圧の降下を起こします。

^(*10) 電流制限はコイルに流れる電流のピークの検出レベルを示す。

^{(*11) &}quot;H" = $V_{IN} \sim V_{IN}$ - 1.2V, "L" = + 0.1V \sim - 0.1V

^{(*12) |} PFM および DTY_{LIMIT_PFM} は XCL206/XCL207 シリーズの PFM 制御時の機能になります(XCL205 シリーズ対象外)。

^(*13) V_{PWMH} および V_{PWML} は XCL207 シリーズの機能になります(XCL205/XCL206 シリーズ対象外)。

■電気的特性

XCL205Cxx3AR/XCL206Cxx3AR/XCL207Cxx3AR/XCL205Cxx3CR/XCL206Cxx3CR/XCL207Cxx3CR

Ta=25°C

				規格値		W / I		
項目	記号	測定条件	MIN. TYP.		MAX. 単位		回路図	
出力電圧	V_{OUT}	外付け部品接続, V _{IN} =V _{CE} =5.0V, I _{OUT} =30mA	<e-1></e-1>	TYP.	MAX.			
動作電圧範囲	V _{IN}		2.0	-	6.0	V	1	
最大出力電流	I _{OUTMAX}	V _{IN} =V _{OUT(T)} +2.0V, V _{CE} =1.0V, 外付け部品接続 ^(*9)	600	-	-	mA	1	
UVLO 電圧	V _{UVLO}	V _{CE} =V _{IN} , V _{OUT} =0V, L _X 端子が"L"レベル保持となる電圧 (*¹),(*¹¹)	1.00	1.40	1.78	V	3	
消費電流(XCL205)		V V 50VV V 44	-	46	65			
消費電流(XCL206, XCL207)	I _{DD}	$V_{IN} = V_{CE} = 5.0V$, $V_{OUT} = V_{OUT(T)} \times 1.1$		21	35	μA	2	
スタンバイ電流	I _{STB}	V _{IN} =5.0V, V _{CE} =0V, V _{OUT} =V _{OUT(T)} ×1.1	1	0	1.0	μA	2	
発振周波数	f _{osc}	外付け部品接続, V _{IN} =V _{OUT(T)} +2.0V, V _{CE} =1.0V, I _{OUT} =100mA	2550	3000	3450	kHz	1	
PFM スイッチ電流(*12)	I _{PFM}	外付け部品接続, V _{IN} =V _{OUT(T)} +2.0V, V _{CE} =V _{IN} , I _{OUT} =1mA	<e-4></e-4>	<e-5></e-5>	<e-6></e-6>	mA	10	
PFM デューティ制限 ^(*12)	DTY _{LIMIT_PFM}	$V_{CE} = V_{IN} = V_{OUT(T)} + 1.0V$, $I_{OUT} = 1mA$	-	200	300	%	1	
最大デューティ比	MAXDTY	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 0.9$	100	-	-	%	3	
最小デューティ比	MINDTY	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 1.1$	-	-	0	%	3	
効率 ^(*2)	EFFI	外付け部品接続, V _{CE} =V _{IN} =V _{OUT(T)} +1.2V, I _{OUT} =100mA	-	<e-7></e-7>	-	%	1	
L _X SW "H" ON 抵抗 1	$R_{L \times H}$	$V_{IN} = V_{CE} = 5.0V$, $V_{OUT} = 0V$, $IL_X = 100 \text{mA}$ (*3)	-	0.35	0.55	Ω	4	
L _x SW "H" ON 抵抗 2	$R_{L \times H}$	$V_{IN} = V_{CE} = 3.6V$, $V_{OUT} = 0V$, $IL_X = 100 \text{mA}^{(*3)}$	-	0.42	0.67	Ω	4	
L _x SW "L" ON 抵抗 1	$R_{L \times L}$	$V_{IN} = V_{CE} = 5.0V^{(*4)}$	-	0.45	0.65	Ω	-	
L _x SW "L" ON 抵抗 2	$R_{L \times L}$	$V_{IN} = V_{CE} = 3.6V^{(*4)}$	-	0.52	0.77	Ω	-	
L _x SW "H" リーク電流 ^(*5)	I _{LEAKH}	$V_{IN} = V_{OUT} = 5.0V, V_{CE} = 0V, L_X = 0V$	-	0.01	1.0	μΑ	9	
電流制限(*10)	I _{LIM}	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 0.9^{(*8)}$	900	1050	1350	mA	6	
出力電圧温度特性	$\triangle V_{OUT}/$ ($V_{OUT} \cdot \triangle Topr$)	I _{OUT} =30mA -40°C≦Topr≦85°C	-	±100	-	ppm/ °C	1	
CE "H" 電圧	V_{CEH}	V _{OUT} = V _{OUT(T)} x0.4, V _{CE} に電圧印加 L _x が"H"となる電圧 ^(*11)	0.65	-	6.0	V	3	
CE "L" 電圧	V_{CEL}	V _{OUT} = V _{OUT(T)} x0.4, V _{CE} に電圧印加 L _x が"L"となる電圧(*11)	V_{SS}	-	0.25	V	3	
PWM "H" レベル電圧 ^(*13)	V_{PWMH}	外付け部品接続, l _{out} =1mA ^(*6) 発振周波数が 2550kHz≦f _{osc} ≦3450kHz となる電圧	-	-	V _{IN} - 1.0	V	1	
PWM "L" レベル 電圧(*13)	$V_{\sf PWML}$	外付け部品接続, l _{out} =1mA ^(*6) 発振周波数が f _{osc} <2550kHz となる電圧	V _{IN} - 0.25	-	-	V	1	
CE "H" 電流	I _{CEH}	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 0.9$	-0.1	0.0	0.1	μΑ	5	
CE "L" 電流	I _{CEL}	$V_{IN} = 5.0V$, $V_{CE} = 0V$, $V_{OUT} = V_{OUT(T)} \times 0.9$	-0.1	0.0	0.1	μA	5	
ソフトスタート時間	t _{SS}	外付け部品接続, V _{CE} =0V → V _{IN} , I _{OUT} =1mA	0.5	0.9	2.5	ms	1	
ラッチ時間	t _{LAT}	V _{IN} =V _{CE} =5.0V, V _{OUT} =0.8×V _{OUT(T)} 抵抗 1Ω にて L _X 短絡 ⁽⁷⁷⁾	1.0	-	20	ms	7	
短絡保護閾値電圧	V_{SHORT}	V _{OUT} を SWEEP し V _{IN} =V _{CE} =5.0V,抵抗 1Ω にて Lx 短絡、1ms 以内に L _X =L となるときの V _{OUT} 電圧	<e-8></e-8>	<e-9></e-9>	<e-10></e-10>	V	7	
C∟放電抵抗	R _{DCHG}	V_{IN} =5.0V, L_X =5.0V, V_{CE} =0V, V_{OUT} =open	200	300	450	Ω	8	
インダクタンス値	L	Test frequency =1MHz	-	1.5	-	μΗ	-	
コイル許容電流	I _{DC}	ΔT=40°C	-	1000	-	mA	-	

測定条件:特に指定無き場合、V_{IN} =5.0V, V_{OUT (T)}=設定電圧、印加端子の順番は V_{OUT}→V_{IN}→V_{CE}

動作状態にて CE/MODE 端子が V_{IN} - 0.3V 以上では PWM/PFM 自動切替え制御、V_{IN} -1.0V 以下で V_{CEH} 以上では PWM 制御を行います。

^(*1)ヒステリシス動作電圧幅を含む

^(*2) EFFI = {[(出力電圧)×(出力電流)]÷[(入力電圧)×(入力電流)]}×100

^(*3) ON 抵抗 = (V_{IN} - L_X 端子測定電圧) / 100mA

^(*4) 設計値

^(*5) 高温時においては最大 10µA 程度リークする場合があります。

^(*6) XCL207 シリーズは CE/MODE が PWM 制御と PWM/PFM 自動切替え制御の外部切替え端子となっております。

 $^{^{(7)}}$ 動作状態から V_{OUT} に抵抗 1Ω を介して GND に短絡させ、電流制限パルス発生から $L_X=0V$ となるまでの時間

 $^{^{(*8)}}$ ON 抵抗による電圧降下の為、 V_{IN} < 2.4V では電流制限に達しない場合があります。

^(*9) 入出力電圧差(降圧差)が小さい場合、最大電流に到達する前に、100%duty となることがあります。 100%duty 状態からさらに電流を引くと Pch ドライバ Tr.のオン抵抗により出力電圧の降下を起こします。

 $^{^{(*10)}}$ 電流制限はコイルに流れる電流のピークの検出レベルを示す。

^{(*11) &}quot;H" = $V_{IN} \sim V_{IN}$ - 1.2V, "L" = + 0.1V \sim - 0.1V

^(*12) I_{PFM} および DTY_{LIMIT_PFM}は XCL206/XCL207 シリーズの PFM 制御時の機能になります(XCL205 シリーズ対象外)。

^(*13) V_{PWMH} および V_{PWML} は XCL207 シリーズの機能になります(XCL205/XCL206 シリーズ対象外)。

■電気的特性

XCL205Gxx3AR/XCL206Gxx3AR/XCL207Gxx3AR/XCL205Gxx3CR/XCL206Gxx3CR/XCL207Gxx3CR

Ta=25°C

項目記号		測定条件	規格値			単位	回路図	
	記方	则 是朱针	MIN.	TYP.	MAX.	単位	凹陷区	
出力電圧	V_{OUT}	外付け部品接続, V _{IN} =V _{CE} =5.0V, I _{OUT} =30mA	<e-1></e-1>	<e-2></e-2>	<e-3></e-3>	V	1	
動作電圧範囲	V_{IN}		1.8	-	6.0	V	1	
最大出力電流	I _{OUTMAX}	V _{IN} =V _{OUT(T)} +2.0V, V _{CE} =1.0V, 外付け部品接続 ^(*9)	600	-	-	mA	1	
UVLO 電圧	V _{UVLO}	V _{CE} =V _{IN} , V _{OUT} =V _{OUT(T)} ×0.5 ^(*14) L _X 端子が"L"レベル ^(*11) 保持となる電圧 ^(*1)	1.00	1.40	1.78	٧	3	
消費電流(XCL205) 消費電流(XCL206, XCL207)	I _{DD}	$V_{IN} = V_{CE} = 5.0V$, $V_{OUT} = V_{OUT(T)} \times 1.1$	-	46 21	65 35	μΑ	2	
スタンバイ電流	I _{STB}	$V_{IN} = 5.0V$, $V_{CE} = 0V$, $V_{OUT} = V_{OUT(T)} \times 1.1$	-	0	1.0	μA	2	
発振周波数	f _{osc}	外付け部品接続, V _{IN} =V _{OUT(T)} +2.0V, V _{CE} =1.0V, I _{OUT} =100mA	2550	3000	3450	kHz	1	
PFM スイッチ電流 ^(*12)	I _{PFM}	外付け部品接続, V _{IN} =V _{OUT(T)} +2.0V, V _{CE} = V _{IN} , I _{OUT} =1mA	<e-4></e-4>	<e-5></e-5>	<e-6></e-6>	mA	10	
PFM デューティ制限 ^(*12)	DTY _{LIMIT_PFM}	$V_{CE} = V_{IN} = V_{OUT(T)} + 1.0V$, $I_{OUT} = 1mA$	-	200	300	%	1	
最大デューティ比	MAXDTY	$V_{IN} = V_{CE} = 5.0V$, $V_{OUT} = V_{OUT(T)} \times 0.9$	100	-	-	%	3	
最小デューティ比	MINDTY	$V_{IN} = V_{CE} = 5.0V$, $V_{OUT} = V_{OUT(T)} \times 1.1$	-	-	0	%	3	
効率(*2)	EFFI	外付け部品接続, V _{CE} =V _{IN} =V _{OUT(T)} +1.2V, I _{OUT} =100mA	-	<e-7></e-7>	-	%	1)	
L _X SW "H" ON 抵抗 1	$R_{L_{\times}H}$	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = 0V, IL_X = 100 \text{mA}^{(*3)}$	-	0.35	0.55	Ω	4	
L _x SW "H" ON 抵抗 2	$R_{L_{\times}H}$	$V_{IN} = V_{CE} = 3.6V$, $V_{OUT} = 0V$, $IL_X = 100$ mA (*3)	-	0.42	0.67	Ω	4	
L _x SW "L" ON 抵抗 1	$R_{L \times L}$	$V_{IN} = V_{CE} = 5.0V$	-	0.45	0.65	Ω	-	
L _x SW "L" ON 抵抗 2	$R_{L \times L}$	$V_{IN} = V_{CE} = 3.6V^{(*4)}$	-	0.52	0.77	Ω	-	
L _x SW "H" リーク電流 ^(*5)	I _{LEAKH}	$V_{IN}=V_{OUT}$ =5.0V, V_{CE} =0V, L_X =0V	-	0.01	1.0	μΑ	9	
電流制限 ^(*10)	I _{LIM}	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 0.9^{(*8)}$	900	1050	1350	mA	6	
出力電圧温度特性	△V _{OUT} / (V _{OUT} • △Topr)	I _{OUT} =30mA -40°C≦Topr≦85°C	-	±100	-	ppm/ °C	1	
CE "H" 電圧	V _{CEH}	V _{OUT} = V _{OUT(T)} x0.4, V _{CE} に電圧印加 L _x が"H"となる電圧(* ¹¹¹⁾	0.65	-	6.0	V	3	
CE "L" 電圧	V_{CEL}	V _{OUT} = V _{OUT(T)} x0.4, V _{CE} に電圧印加 L _x が"L"となる 電圧 ^(*11)	V _{SS}	-	0.25	V	3	
PWM "H" レベル電圧(*13)	V_{PWMH}	外付け部品接続, I _{OUT} =1mA ^(*6) 発振周波数が 2550kHz≦f _{Osc} ≦3450kHz となる電圧	-	-	V _{IN} - 1.0	V	1	
PWM "L" レベル 電圧 ^(*13)	V_{PWML}	外付け部品接続, I _{OUT} =1mA ^(*6) 発振周波数が f _{osc} <2550kHz となる電圧	V _{IN} - 0.25	-	-	V	1	
CE "H" 電流	I _{CEH}	$V_{IN} = V_{CE} = 5.0V, V_{OUT} = V_{OUT(T)} \times 0.9$	-0.1	0.0	0.1	μA	(5)	
CE "L" 電流	I _{CEL}	$V_{IN} = 5.0V$, $V_{CE} = 0V$, $V_{OUT} = V_{OUT(T)}x0.9$	-0.1	0.0	0.1	μA	(5)	
ソフトスタート時間	t _{SS}	外付け部品接続, V _{CE} =0V → V _{IN} , I _{OUT} =1mA	-	<e-11></e-11>	<e-12></e-12>	ms	1	
ラッチ時間	t _{LAT}	V_{IN} = V_{CE} =5.0V, V_{OUT} =0.8× $V_{OUT(T)}$ 抵抗 1Ω にて $L_{\rm X}$ 短絡 $^{(7)}$	1.0	-	20	ms	7	
短絡保護閾値電圧	V _{SHORT}	V_{OUT} を SWEEP し V_{IN} = V_{CE} =5.0V,抵抗 1Ω にて L_X 短絡、 1 ms 以内に L_X = L となるときの V_{OUT} 電圧	<e-8></e-8>	<e-9></e-9>	<e-10></e-10>	V	7	
C∟放電抵抗	R _{DCHG}	V_{IN} =5.0V, L_X =5.0V, V_{CE} =0V, V_{OUT} =open	200	300	450	Ω	8	
インダクタンス値	L	Test frequency =1MHz	-	1.5	-	μΗ	-	
コイル許容電流	I _{DC}	ΔT = 40°C	-	1000	-	mA	-	

測定条件:特に指定無き場合、V_{IN} =5.0V, V_{OUT (T)}=設定電圧、印加端子の順番は V_{OUT}→V_{IN}→V_{CE}

^(*1) ヒステリシス動作電圧幅を含む

 $^{^{(*2)}}$ EFFI = {[(出力電圧)×(出力電流)]÷[(入力電圧)×(入力電流)]}×100

^(*3) ON 抵抗 = (V_{IN} - L_X端子測定電圧) / 100mA

^(*4) 設計値

^(*5) 高温時においては最大 10µA 程度リークする場合があります。

^{(&}lt;sup>*6)</sup> XCL207 シリーズは CE/MODE が PWM 制御と PWM/PFM 自動切替え制御の外部切替え端子となっております。

動作状態にて CE/MODE 端子が V_{IN} - 0.3V 以上では PWM/PFM 自動切替え制御、V_{IN} -1.0V 以下で V_{CEH} 以上では PWM 制御を行います。

 $^{^{(17)}}$ 動作状態から V_{OUT} に抵抗 1Ω を介して GND に短絡させ、電流制限パルス発生から $L_X=0V$ となるまでの時間

 $^{^{(^*8)}}$ ON 抵抗による電圧降下の為、 V_{IN} < 2.4V では電流制限に達しない場合があります。

^(*9) 入出力電圧差(降圧差)が小さい場合、最大電流に到達する前に、100%duty となることがあります。 100%duty 状態からさらに電流を引くと Pch ドライバ Tr.のオン抵抗により出力電圧の降下を起こします。

^(*10) 電流制限はコイルに流れる電流のピークの検出レベルを示す。

^{(*11) &}quot;H" = $V_{IN} \sim V_{IN}$ - 1.2V, "L" = + 0.1V \sim - 0.1V

^(*12) I_{PFM} および DTY_{LIMIT_PFM} は XCL206/XCL207 シリーズの PFM 制御時の機能になります(XCL205 シリーズ対象外)。

^(*13) V_{PWMH} および V_{PWML} は XCL207 シリーズの機能になります(XCL205/XCL206 シリーズ対象外)。

 $^{^{(*14)}}$ $V_{OUT(T)}$ ×0.5V が V_{IN} 以上になる場合は V_{IN} を印加してください。

■電気的特性

XCL205Fxx3AR/XCL206Fxx3AR/XCL207Fxx3AR/XCL205Fxx3CR/XCL206Fxx3CR/XCL207Fxx3CR

Ta=25°C

-7.0	= 그ㅁ '메스성 /止		規格値		227.1		
項目	記号	測定条件	MIN.	TYP.	MAX.	単位	回路図
FB 電圧	V_{FB}	V _{IN} =V _{CE} =5.0V, V _{FB} を 0.9V から下げていき、 L _X ="H" ^(*11) となるときの V _{FB} 電圧	0.784	0.800	0.816	V	3
動作電圧範囲	V_{IN}		1.8	-	6.0	V	1
最大出力電流	I _{OUTMAX}	V _{IN} =3.2V, V _{CE} =1.0V,外付け部品接続 ^(*9)	600	-	-	mA	11)
UVLO 電圧	V_{UVLO}	V _{CE} =V _{IN} , V _{FB} =0.4V, L _X 端子が"L"レベル ^(*11) 保持となる電圧 ^(*1) , ^(*11)	1.00	1.40	1.78	V	3
消費電流(XCL205)	1	\\ -\\ -5 0\\ \\ -0 00\\	-	46	65		(2)
消費電流(XCL206, XCL207)	I _{DD}	$V_{IN} = V_{CE} = 5.0V, V_{FB} = 0.88V$	-	21	35	μΑ	(2)
スタンバイ電流	I _{STB}	$V_{IN} = 5.0 \text{V}, V_{CE} = 0 \text{V}, V_{FB} = 0.88 \text{V}$	-	0	1.0	μA	2
発振周波数	f _{osc}	外付け部品接続, V _{IN} =3.2V, V _{CE} =1.0V, I _{OUT} =100mA	2550	3000	3450	kHz	11)
PFM スイッチ電流 ^(*12)	I _{PFM}	外付け部品接続, V _{IN} =3.2V, V _{CE} = V _{IN} , I _{OUT} =1mA	170	220	270	mA	12
PFM デューティ制限(*12)	DTY _{LIMIT_PFM}	V _{CE} =V _{IN} =2.2V, I _{OUT} =1mA	-	200	300	%	(1)
最大デューティ比	MAXDTY	$V_{IN} = V_{CE} = 5.0V, V_{FB} = 0.72V$	100	-	-	%	3
最小デューティ比	MINDTY	$V_{IN} = V_{CE} = 5.0V, V_{FB} = 0.88V$	-	-	0	%	3
効率 ^(*2)	EFFI	外付け部品接続, V _{CE} =V _{IN} =2.4V, I _{OUT} =100mA	-	86	-	%	11)
L _x SW "H" ON 抵抗 1	$R_{L \times H}$	$V_{IN} = V_{CE} = 5.0V$, $V_{FB} = 0.72V$, $IL_X = 100 \text{mA}^{(*3)}$	-	0.35	0.55	Ω	4
L _x SW "H" ON 抵抗 2	$R_{L \times H}$	$V_{IN} = V_{CE} = 3.6V, V_{FB} = 0.72V, IL_X = 100 \text{mA}^{(*3)}$	-	0.42	0.67	Ω	4
L _x SW "L" ON 抵抗 1	$R_{L \times L}$	V _{IN} =V _{CE} =5.0V (*4)	-	0.45	0.65	Ω	-
L _x SW "L" ON 抵抗 2	$R_{L \times L}$	$V_{IN} = V_{CE} = 3.6V^{(*4)}$	-	0.52	0.77	Ω	-
L _X SW "H" リーク電流 ^(*5)	I _{LEAKH}	V _{IN} =V _{FB} =5.0V, V _{CE} =0V, L _X =0V	-	0.01	1.0	μΑ	(5)
電流制限(*10)	I _{LIM}	V _{IN} =V _{CE} =5.0V, V _{FB} =0.72V ^(*8)	900	1050	1350	mA	6
出力電圧温度特性	△V _{OUT} / (V _{OUT} • △Topr)	-40°C≦Topr≦85°C I _{ouт} =30mA,外付け部品接続	-	±100	-	ppm/ °C	11)
CE "H" 電圧	V_{CEH}	V _{FB} =0.72V, V _{CE} に電圧印加 L _X が"H"となる電圧(*11)	0.65	-	6.0	V	3
CE "L" 電圧	V_{CEL}	V _{FB} =0.72V, V _{CE} に電圧印加 L _X が"L"となる電圧 ^(*11)	Vss	-	0.25	V	3
PWM "H" レベル電圧 ^(*13)	V_{PWMH}	外付け部品接続, l _{out} =1mA ^(*6) 発振周波数が 2550kHz≦f _{osc} ≦3450kHz となる電圧	-	-	V _{IN} - 1.0	V	11)
PWM "L" レベル 電圧* ¹³⁾	V_{PWML}	外付け部品接続, l _{out} =1mA ^(*6) 発振周波数が f _{osc} <2550kHz となる電圧	V _{IN} - 0.25	-	-	V	11)
CE "H" 電流	I _{CEH}	$V_{IN} = V_{CE} = 5.0V$, $V_{FB} = 0.72V$,	-0.1	0.0	0.1	μΑ	(5)
CE "L" 電流	I _{CEL}	$V_{IN} = 5.0V$, $V_{CE} = 0V$, $V_{FB} = 0.72V$,	-0.1	0.0	0.1	μΑ	(5)
ソフトスタート時間	t _{ss}	外付け部品接続, V _{CE} =0V → V _{IN} , I _{OUT} =1mA	-	0.25	0.40	ms	1
ラッチ時間	t _{LAT}	V _{IN} =V _{CE} =5.0V, V _{FB} =0.64V, 抵抗 1Ω にて L _X 短絡 ^(*7)	1.0	-	20	ms	7
短絡保護閾値電圧	V_{SHORT}	V_{IN} = V_{CE} =5.0V, V_{FB} を 0.4V から下げて行き L_X =L となるときの V_{FB} 電圧 $^{(11)}$	0.15	0.20	0.25	V	7
C∟放電抵抗	R _{DCHG}	V _{IN} =5.0V, L _X =5.0V, V _{CE} =0V, V _{FB} =open	200	300	450	Ω	8
インダクタンス値	L	Test frequency =1MHz	-	1.5	-	μH	-
コイル許容電流	I _{DC}	$\Delta T = 40^{\circ}C$	-	1000	-	mA	-

測定条件:外付け部品接続時は出力電圧 1.2V に設定。特に指定無き場合、VIN =5.0V, 印加端子の順番は VFB→VIN→VCE

動作状態にて CE/MODE 端子が V_{IN} - 0.3V 以上では PWM/PFM 自動切替え制御、V_{IN} -1.0V 以下で V_{CEH}以上では PWM 制御を行います。

^(*1) ヒステリシス動作電圧幅を含む

^(*2) EFFI = {[(出力電圧)×(出力電流)]÷[(入力電圧)×(入力電流)]}×100

^(*3) ON 抵抗 = (V_{IN} - L_X端子測定電圧) / 100mA

^(*4) 設計値

^(*5) 高温時においては最大 10µA 程度リークする場合があります。

^{(&}lt;sup>'6)</sup>XCL207 シリーズは CE/MODE が PWM 制御と PWM/PFM 自動切替え制御の外部切替え端子となっております。

 $^{^{(7)}}$ 動作状態から V_{FB} に抵抗 1Ω を介して GND に短絡させ、電流制限パルス発生から L_X = 0V となるまでの時間

 $^{^{(^*8)}}$ ON 抵抗による電圧降下の為、 V_{IN} < 2.4V では電流制限に達しない場合があります。

^(*9) 入出力電圧差(降圧差)が小さい場合、最大電流に到達する前に、100%duty となることがあります。 100%duty 状態からさらに電流を引くと Pch ドライバ Tr.のオン抵抗により出力電圧の降下を起こします。

^(*10) 電流制限はコイルに流れる電流のピークの検出レベルを示す。

^{(*11) &}quot;H" = $V_{IN} \sim V_{IN}$ - 1.2V, "L" = + 0.1V \sim - 0.1V

^(*12) IPFM および DTYLIMIT PFM は XCL206/XCL207 シリーズの PFM 制御時の機能になります(XCL205 シリーズ対象外)。

^(*13) V_{PWMH} および V_{PWML} は XCL207 シリーズの機能になります(XCL205/XCL206 シリーズ対象外)。

■電気的特性

電圧別一覧表

●出力電圧

設定電圧	V _{OUT} (V)					
改化电压	<e-1></e-1>	<e-2></e-2>	<e-3></e-3>			
$V_{\text{OUT(T)}}$	MIN	TYP	MAX			
1.00	0.980	1.000	1.020			
1.20	1.176	1.200	1.224			
1.40	1.372	1.400	1.428			
1.50	1.470	1.500	1.530			
1.75	1.715	1.750	1.785			
1.80	1.764	1.800	1.836			
1.90	1.862	1.900	1.938			
2.50	2.450	2.500	2.550			
2.80	2.744	2.800	2.856			
2.85	2.793	2.850	2.907			
3.00	2.940	3.000	3.060			
3.30	3.234	3.300	3.366			

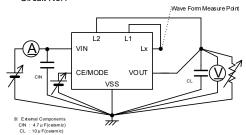
●PFM スイッチ電流

	I _{PFM} (mA)				
設定電圧	<e-4></e-4>	<e-5></e-5>	<e-6></e-6>		
	MIN	TYP	MAX		
V _{OUT(T)} ≦1.2V	190	260	350		
1.2V < V _{OUT(T)} ≤ 1.75V	180	240	300		
1.8V≦V _{OUT(T)}	170	220	270		

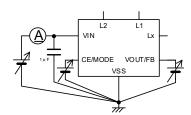
●効率

- XII —	
	効率(%)
設定電圧	XCL 共通
	<e-7></e-7>
$V_{OUT(T)}$	3.0MHz 品
1.00	79
1.20	82
1.40	83
1.50	84
1.75	
1.80	85
1.90	
2.50	
2.80	
2.85	86
3.00	
3.30	

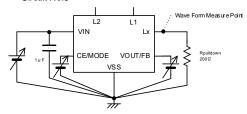
●短絡保護閾値電圧

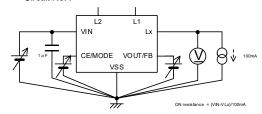

	V _{SHORT} (V)					
設定電圧	XCL205/206/207A,B,C タイプ		XCL205/206/207G タイプ			
	<e-8></e-8>	<e-9></e-9>	<e-10></e-10>	<e-8></e-8>	<e-9></e-9>	<e-10></e-10>
$V_{\text{OUT(T)}}$	MIN	TYP	MAX	MIN	TYP	MAX
1.00	0.375	0.500	0.625	0.188	0.250	0.313
1.20	0.450	0.600	0.750	0.225	0.300	0.375
1.40	0.525	0.700	0.875	0.263	0.350	0.438
1.50	0.563	0.750	0.938	0.282	0.375	0.469
1.75	0.656	0.875	1.094	0.328	0.438	0.547
1.80	0.675	0.900	1.125	0.338	0.450	0.563
1.90	0.713	0.950	1.188	0.357	0.475	0.594
2.50	0.938	1.250	1.563	0.469	0.625	0.782
2.80	1.050	1.400	1.750	0.525	0.700	0.875
2.85	1.069	1.425	1.781	0.535	0.713	0.891
3.00	1.125	1.500	1.875	0.563	0.750	0.938
3.30	1.238	1.650	2.063	0.619	0.825	1.032

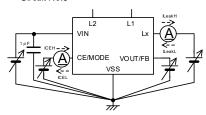
●ソフトスタート時間(XCL20xB,XCL20xG の場合)

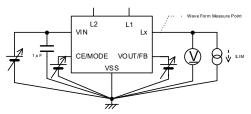

	t _{SS} (ms)		
設定電圧	<e-11></e-11>	<e-12></e-12>	
	TYP	MAX	
0.8V≦V _{OUT(T)} ≦1.75V	0.25	0.4	
1.8V≦V _{OUT(T)} ≦4.0V	0.32	0.5	

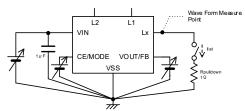
■測定回路図

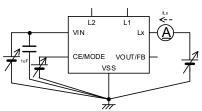

< Circuit No.1 >

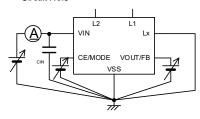

< Circuit No.2 >

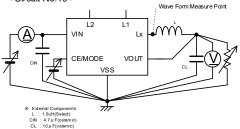

< Circuit No.3 >

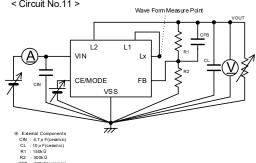

< Circuit No.4 >

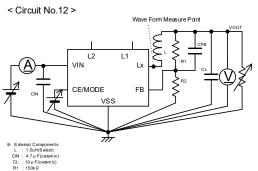

< Circuit No.5 >


< Circuit No.6 >

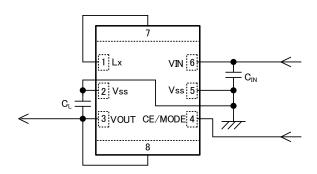

< Circuit No.7 >


< Circuit No.8 >


< Circuit No.9 >



< Circuit No.10 >

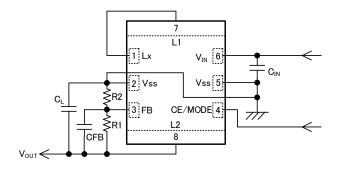


■標準回路例

●XCL205/XCL206/XCL207 シリーズ A/B/C/G Types

●周辺部品例

 C_{IN} : 10V/4.7 μ F(Ceramic) C_L : 6.3V/10 μ F(Ceramic)


(注意)

コイルは本製品専用になります。

本製品以外の用途で使用しないで下さい。

C_{IN}、C_Lには、温度特性が B、X5R、X7R 特性を使用し DC バイアスにて静電容量が減少しにくいセラミックコン デンサをご使用下さい。

●XCL205/XCL206/XCL207 シリーズ F Types

●周辺部品例(Vout=1.8V 設定時)

 C_{IN} : 10V/4.7 μ F(Ceramic) C_L : 6.3V/10 μ F(Ceramic)

R1 : $300k\Omega$ R2 : $240k\Omega$ CFB : 150pF

(注意)

コイルは本製品専用になります。

本製品以外の用途で使用しないで下さい。

 C_{IN} 、 C_L には、温度特性が B、X5R、X7R 特性を使用し DC バイアスにて静電容量が減少しにくいセラミックコンデンサをご使用下さい。

<XCL205/206/207 F タイプの出力電圧設定>

外部に分割抵抗を付けることで出力電圧が設定できます。出力電圧は、R1 と R2 の値によって下記の式で決まります。 R1 と R2 の和は通常 $1M\Omega$ 以下とします。出力電圧範囲は基準電圧源 $0.8V\pm2.0\%$ により 0.9V から 6.0V まで設定可能です。 但し、入力電圧 (V_{IN}) ≦設定出力電圧の場合、出力電圧 (V_{OUT}) は入力電圧 (V_{IN}) 以上の電圧を出力できません。

V_{OUT}=0.8×(R1+R2)/R2

位相補償用スピードアップコンデンサ CFB の値は、fzfb=1/(2×π×CFB×R1)が 10kHz 以下となるように調整してください。 また、使用部品や基板レイアウトにより、1kHz~20kHz 程度となるように調整して頂くことで最適となります。 【計算例】

R1=470kΩ, R2=150kΩの時、

V_{OUT}=0.8×(470k+150k) / 150k=3.3V

●V_{OUT}代表設定例

V _{OUT} (V)	R1(kΩ)	R2(kΩ)	CFB(pF)
0.9	100	820	150
1.2	150	300	100
1.5	130	150	220
1.8	300	240	150
2.5	510	240	100
3.0	330	120	150
3.3	470	150	100
4.0	120	30	470

■動作説明

XCL205/XCL206/XCL207 シリーズは、基準電圧源、ランプ波回路、エラーアンプ、PWM コンパレータ、位相補償回路、出力電圧調整抵抗、Pch MOS ドライバ Tr.、同期整流用 Nch MOS スイッチ Tr.、電流制限回路、UVLO 回路等を内蔵した制御 IC とコイルで構成されています。(前述のブロック図参照)

内部基準電圧と Vout 端子より R1,R2 を通ってフィードバックされた電圧をエラーアンプで比較し、エラーアンプの出力に位相補償をかけ、PWM 動作時のスイッチングの ON タイムを決定するために PWM コンパレータに信号を入力します。PWM コンパレータでは、エラーアンプから来た信号とランプ回路から来たランプ波を電圧レベルとして比較し、出力をバッファードライブ回路に送り、Lx 端子よりスイッチングのデューティ幅として出力します。この動作を連続的に行い、出力電圧を安定させています。

また、カレントフィードバック回路により、スイッチング毎の Pch MOS ドライバ Tr.の電流がモニタリングされており、エラーアンプの出力信号に多重帰還信号として変調をかけています。これにより、セラミックコンデンサ等の低 ESR コンデンサを使用しても安定した帰還系が得られ、出力電圧の安定化が図られています。

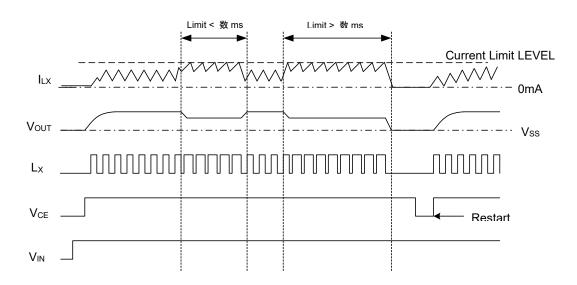
<基準電圧源>

本 IC の出力電圧を安定にするため基準になるリファレンス電圧です。

<ランプ回路>

スイッチング周波数はこの回路により3MHzに固定されています。ここで生成されたクロックでPWM動作に必要なランプ波が作られており、また、各内部回路が同期しています。

<エラーアンプ>


エラーアンプは出力電圧監視用のアンプです。内部抵抗 R1、R2 で分割された電圧が、フィードバックされ基準電圧と比較されます。基準電圧より低い電圧がフィードバックされるとエラーアンプの出力電圧は高くなるように動作します。エラーアンプの周波数特性は、最適化された信号がミキサーへ送られます。

<電流制限>

XCL205/XCL206/XCL207 シリーズの電流制限回路は、 L_X 端子に接続された Pch MOS ドライバ Tr.を流れる電流を監視しており、電流制限と機能停止の複合となっています。

- ①一定電流以上ドライバ電流が流れると電流制限機能が動作しLx 端子から出力するパルスを任意のタイミングでオフさせます。
- ②Pch MOS ドライバ Tr.がオフされることで電流制限回路はリミット検知状態から解除されます。
- ③次のパルスのタイミングで Pch MOS ドライバ Tr.はオンしますが、この時過電流状態であれば直ちに Pch MOS ドライバ Tr.はオフします。
 - ④過電流状態でなくなれば通常の動作になります。
- ①~③を繰り返しながら過電流状態がなくなるのを待ちます。数 ms の間 過電流状態が続き①~③の動作を繰り返すと Pch MOSドライバ Tr.のオフ状態をラッチする機能が働き機能停止となります。一旦機能停止状態になると、CE/MODE 端子から一度 IC をオフにして立ち上げるか、VIN 端子の電源再投入を行うことで動作を再開します。機能停止状態は、シャットダウンではなくパルス出力を停止している状態なので内部回路は動作しています。電流制限は、XCL205/XCL206/XCL207 シリーズでは TYP:1050mA となっております。

尚、ラッチ時間は周囲のノイズによる影響にて電流リミット検知状態から解除されることがあり基板の状態によってはラッチ時間が長くなる場合やラッチ動作に至らない場合があります。入力容量はできる限り近くに配置するようにして下さい。

■動作説明

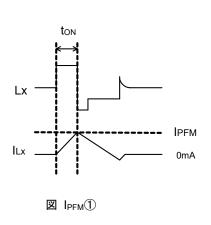
<短絡保護>

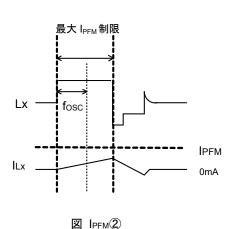
短絡保護は Vout 電圧を R1,R2 により分圧された電圧(前述のブロック図 FB)で監視しており、誤って出力を GND とショートしてしまった場合、FB 電圧が基準電圧(Vref)の 1/2 以下となりかつ ILIM 以上の電流がドライバ Tr.に流れた場合、短絡保護が働き瞬時に Pch MOS ドライバ Tr.をオフさせラッチをかけます。 G/F タイプの場合は電流制限に関係なく、FB 電圧が基準電圧(Vref)の 1/4 以下となった場合、短絡保護が働き瞬時に Pch MOS ドライバ Tr.をオフさせラッチをかけます。

ー旦ラッチ状態になりますと、CE/MODE 端子から IC を一度オフにしてから立ち上げ直すか、VIN 端子の再投入を行うことで動作を再開いたします。

急峻な負荷変動が起こった場合、Vout 電圧の電圧降下が CFB を通して直接 FB に伝わり、Vout 電圧の 1/2 より高い電圧で短絡保護が働く場合があります。

<UVLO 回路>


V_{IN}端子電圧が 1.4V 以下になると内部回路の動作不安定による誤パルス出力防止のため、Pch MOS ドライバ Tr.を強制的にオフした 状態にします。 V_{IN}端子電圧が 1.8V 以上になるとスイッチング動作を行います。UVLO 機能が解除されることでソフトスタート機能が働 き出力立上げ動作が開始されます。瞬時的に V_{IN}端子が UVLO 動作電圧より降下した場合もソフトスタートは動作します。UVLO での停 止は、シャットダウンではなくパルス出力を停止している状態なので内部回路は動作しています。


<PFM スイッチ電流>

PFM 動作時は、コイルに流れる電流がある一定電流(IPFM)に達するまで Pch MOS ドライバ Tr.をオンします。このときの Pch MOS ドライバ Tr.のオン時間(ton)は次式によって決定されます

<PFM デューティ制限>

PFM 時の最大 DUTY 比(DTYLIMIT_PFM)を TYP=200%程度と定めています。よって降圧差が少ない場合などの DUTY が広がる条件では IPFM に達しなくとも Pch MOS ドライバ Tr.をオフすることがあります。図 IPFM②

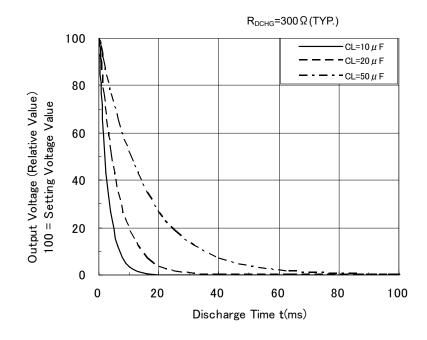
■動作説明

<C∟高速ディスチャージ機能>

XCL205B(C,G,F)/ XCL206B(C,G,F)/ XCL207B(C,G,F)シリーズでは、ブロック図内 Lx 端子-Vss 端子間に接続された Nch MOS Tr.に より CE 端子 L レベル信号入力時(IC スタンバイ時)出力容量(CL)の電荷を高速ディスチャージすることが可能です。IC 停止時に CL の電荷が残っていることによるアプリケーションの誤動作を防ぐことが可能です。放電時間は、この CL 放電抵抗と CL によって決定されます。 CL 放電抵抗を R とし CL の容量値を C としたとき、その時定数 $T=C\times R$ が定まり、次式によって出力電圧の放電時間が求められます。

 $V = V_{OUT(T)} \times e^{-t/\tau}$ また t について展開すると t = TLn ($V_{OUT(T)} / V$)

V: 放電後の出力電圧


VouT(T): 設定電圧, t:放電時間

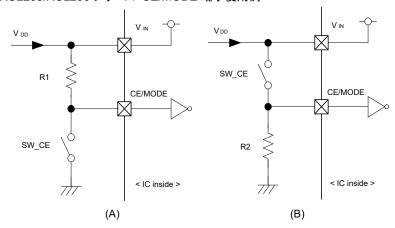
T: C×R

C = 出力コンデンサ(CL)の容量値

R = CL 放電抵抗の抵抗値

Output Voltage Discharge Characteristics

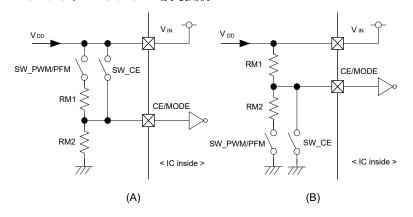
■動作説明


<CE/MODE 端子の機能>

XCL205/XCL206/XCL207 シリーズは、CE/MODE 端子にLレベルを入力することでスタンバイ状態に出来ます。スタンバイ状態では、IC の消費電流は 0μA(TYP.)となります。また、Lx 端子と Vout 端子は高インピーダンスとなります。

CE/MODE 端子にHレベルを入力することで動作開始します。

CE/MODE 端子の入力は、CMOS 入力になっておりシンク電流は 0µA(TYP.)となります。


・XCL205/XCL206 シリーズ CE/MODE 端子使用例

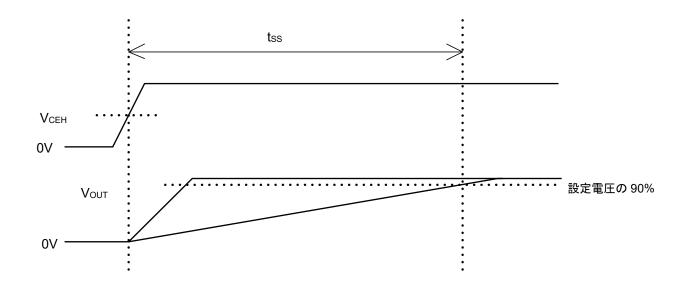
(A)		
SW_CE	状態	
ON	スタンバイ	
OFF	動作	

(B) SW_CE 状態 ON 動作 OFF スタンパイ

・XCL207 シリーズ CE/MODE 端子使用例

(A)		
SW_CE	SW_PWM/PFM	状態
ON	*	PWM/PFM 自動切替え制御動作
OFF	ON	PWM 制御動作
OFF	OFF	スタンバイ

(B)


SW_CE	SW_PWM/PFM	状態
ON	*	スタンバイ
OFF	ON	PWM 制御動作
OFF	OFF	PWM/PFM 自動切替え制御動作

中間電圧は、RM1,RM2 により作成することができます。R1,R2,RM1,RM2 はそれぞれ、数 100k Ω ~数 M Ω 程度に設定して下さい。各 スイッチには CPU のオープンドレイン I/O ポートやトランジスタ等のスイッチが使用できます。

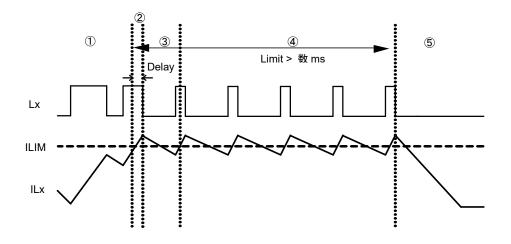
■動作説明

<ソフトスタート機能>

XCL205/XCL206/XCL207 シリーズのソフトスタート時間は A、C タイプ:0.9ms(TYP.)程度、B、G、F タイプ:0.32ms(TYP.)程度に内部で最適化されております(ただし、 V_{OUT} =1.8V 未満で 0.25ms(TYP.)になります)。このソフトスタート時間は V_{CE} 立ち上り時より出力電圧が設定電圧の 90%に到達するまでの時間としております。

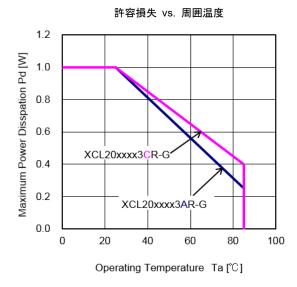
■使用方法

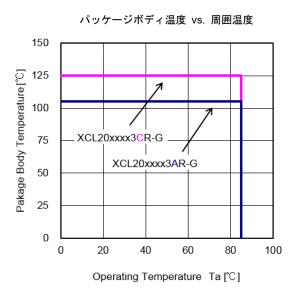
- 1. XCL205/XCL206/XCL207 シリーズは出力コンデンサとしてセラミックコンデンサを使用できるように設計されておりますが、入出力電位差が大きい場合等、スイッチングのエネルギーが大きくなりすぎる為、セラミックコンデンサのみではキャッチしきれず異常発振することがあります。このような場合は電解コンデンサ等を並列に接続する等で容量を補うようにして下さい。
- 2. DC/DC コンバータのようなスイッチングレギュレータにおきましてはスパイクノイズやリップル電圧が生じます。これらは部品や部品 配置、基板配線等のレイアウトによって大きく影響されます。設計される際は十分に実機にてご確認下さい。
- 3. 入出力電位差や負荷電流の状態により、発振周波数が 1/2,1/3,...となり、リップル電圧が増加する場合があります。
- 4. 入出力電位差が大きく、軽負荷時においては細いデューティが出力され、その後 0%デューティを数周期の間保持する状態があります。
- 5. 入出力電位差が小さく、重負荷時においては太いデューティが出力され、その後 100%デューティを数周期の間保持する状態があります。
- 6. 本 IC では電流制限回路により、コイルのピーク電流を監視しております。入出力電位差が大きい場合や負荷電流が大きい場合に ピーク電流が増加する為、電流制限がかかりやすくなり動作が不安定になる可能性がありますので十分に動作を確認して下さい。 尚、次式にてコイルのピーク電流は示されます。


 $lpk = (V_{IN} - V_{OUT}) \times OnDuty / (2 \times L \times f_{OSC}) + I_{OUT}$

L: コイルの L 値 fosc: 発振周波数

- 7. 電流制限を超えるような過電流(ピーク電流)が一定時間流れた場合には内蔵 Pch ドライバ Tr.をオフさせます。電流制限を検知し、 内蔵 Pch MOS ドライバ Tr.をオフさせるまでの時間は電流制限分の電流が流れます。
- 8. Vin < 2.4V においては ON 抵抗による電圧降下によって電流制限に至らない場合があります。
- 9. ラッチ時間は基板の状態によって電流制限検知状態から解除され長くなる場合やラッチ動作に至らない場合があります。入力容量 はできる限り IC の近くに配置するようにして下さい。
- 10. 本 IC では最低動作電圧以下において動作不安定になることがあります。
- 11. 外付け部品および本 IC の絶対最大定格を超えないようにご注意下さい。
- 12. 本 IC 高温時使用した場合、Pch MOS ドライバ Tr.のリーク電流により無負荷状態では出力電圧が入力電圧レベルまで上昇することがあります。
- 13. 電流制限は 1350mA (MAX.)となっておりますが、それ以上の電流が流れることがあります。

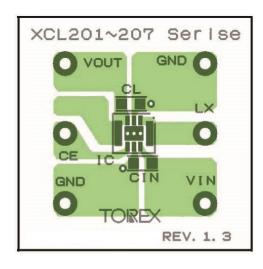

Vout を GND にショートさせ電流制限を働かせた場合、Pch トランジスタがオンの時はコイルの両端に入力電圧分の電位差が発生しているのでコイル電流の時間変化率が大きいのに対し、Nch トランジスタがオンの時は Vout が GND にショートしている為コイル両端の電位差がほぼ無いので、コイル電流の時間変化率が非常に小さくなります。この動作が繰り返され回路の遅延時間も手伝ってコイル電流は本来制限される電流量を超えたある電流値に収束します。但しこの場合でも過電流状態が数 ms の間続くと回路がラッチされます。

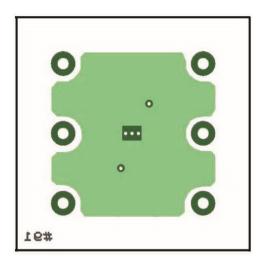

- ① Pch MOS ドライバ Tr.に電流制限(ILIM)まで電流が流れます。
- ② 回路の遅延時間により ILIM の判定から Pch MOS ドライバ Tr.のオフまで ILIM 以上の電流が流れます。
- ③ コイル両端の電位差が無いため、コイル電流の時間変化率が非常に小さくなります。
- ④ 電流制限により数 ms の間、Lx は細いパルスを発振します。
- ⑤ ラッチ機能が働き、機能停止となります。

■使用方法

- 14. V_{IN} 電位の変動をできるだけ抑える為に V_{IN} 端子と V_{SS} 端子に最短でバイパスコンデンサ(C_{IN})を接続して下さい。IC と C_{IN} の距離が離れすぎると発振周波数が崩れることがあります。
- 15.降圧差が大きく負荷が非常に軽い場合には PWM 制御時にも間欠発振することがあります。
- 16.本製品はパッケージの温度仕様によって、許容温度範囲が制限されています。 そのため、下記に記す許容損失カーブ、パッケージボディ温度の範囲でご使用下さい。 また、許容損失カーブは実装条件等に影響を受け、値が変化するため実装条件にての参考データとなります。
- 17. 実装はコイル端子を基準として実装お願いします。

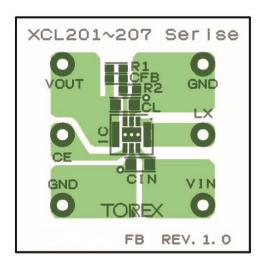
micro DC/DC の電力損失は、下記の計算式により求めることが出来ます。

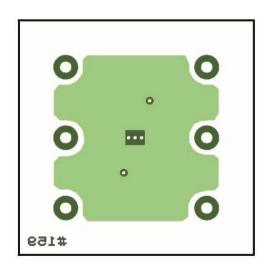

電力損失 = V_{OUT} × I_{OUT} × ((100/EFFI) – 1) 〔W〕


V_{OUT}: 出力電圧〔V〕 I_{OUT}: 出力電流〔A〕 EFFI: 変換効率〔%〕

■使用方法

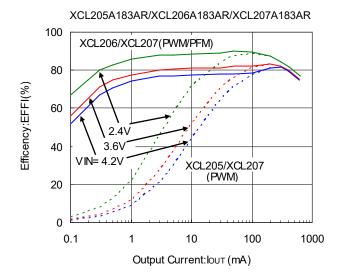
18.レイアウトのご注意

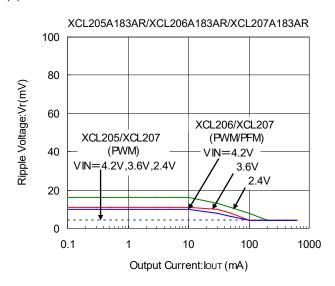

- (1) V_{IN} 電位の変動をできるだけ抑える為に V_{IN}(6 番)端子と Vss(5 番)端子は最短でバイパスコンデンサ(C_{IN})を接続して下さい。
- (2) 各周辺部品はできる限りIC の近くに実装するようにして下さい。
- (3) 周辺部品は配線のインピーダンスを下げる為、太く短く配線して下さい。
- (4) GND 配線を十分に強化して下さい。スイッチング時の GND 電流による GND 電位の変動は IC の動作を不安定にする場合があります。
- (5) 本製品は Tr.内蔵のため IOUT の電流とドライバオン抵抗により発熱が生じます。
- (6) Lx(1番)端子とL1(7番)端子は基板配線で接続して下さい。
- (7) Vout(3番)端子と L2(8番)端子は基板配線で接続して下さい。
- ・A/B/C/G タイプ 参考パターン



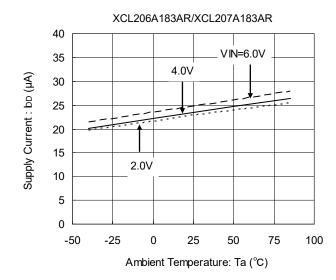
表面 裏面(左右反転)

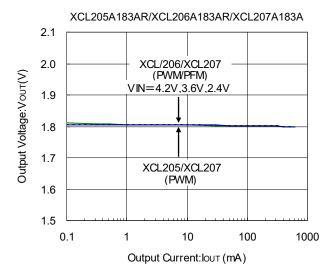
Fタイプ参考パターン

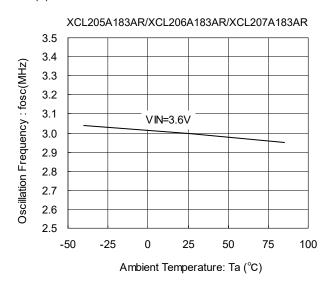


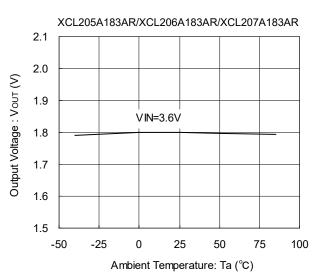

表面 裏面(左右反転)

■特性例

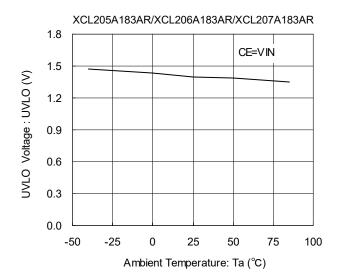

(1) 効率 - 出力電流


(3) リップル電圧 - 出力電流

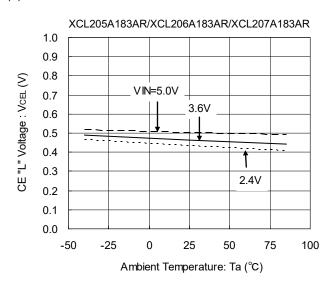

(5) 消費電流 - 周囲温度


(2) 出力電圧 - 出力電流

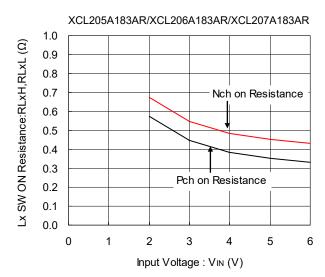
(4) 発振周波数 - 周囲温度



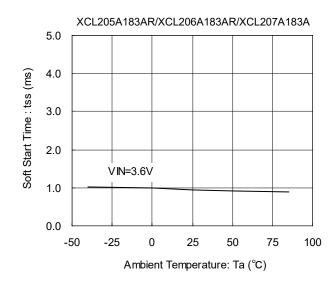
(6) 出力電圧 - 周囲温度



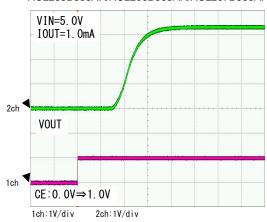
■特性例


(7) UVLO 電圧 - 周囲温度

(9) CE "L" 電圧 - 周囲温度

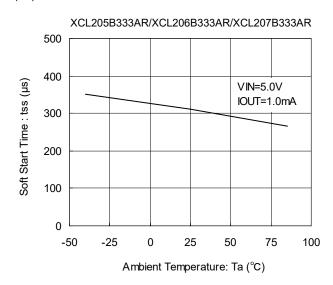

(11) "Pch/Nch"ドライバ on 抵抗 - 電源電圧

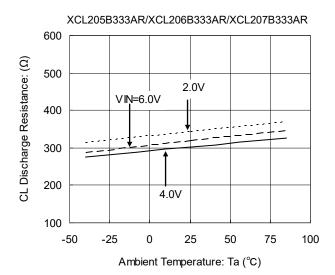
(8) CE "H" 電圧 - 周囲温度



(10) ソフトスタート時間 - 周囲温度

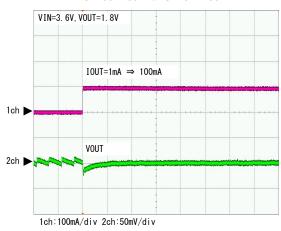
(12) 出力電圧立ち上がり波形

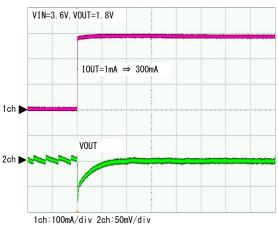

XCL205B333AR/XCL206B333AR/XCL207B333AR


Time:100µs/div

■特性例

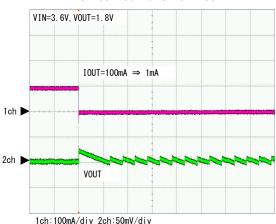
(13) ソフトスタート時間 - 周囲温度


(14) CL 放電抵抗 - 周囲温度

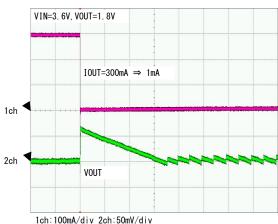

(15) 負荷過渡応答 1

MODE: PWM/PFM Automatic Switching Control

XCL206A183AR/XCL207A183AR


XCL206A183AR/XCL207A183AR

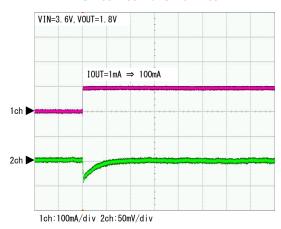
Time:100µs/div


Time:100µs/div

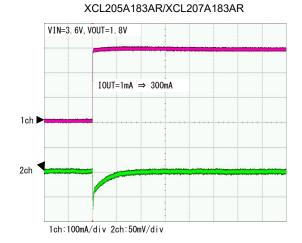
XCL206A183AR/XCL207A183AR

Time:100µs/div

XCL206A183AR/XCL207A183AR

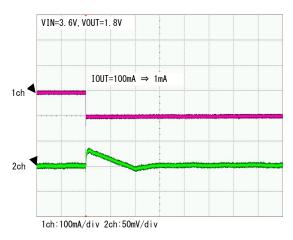

Time:100µs/div

■特性例

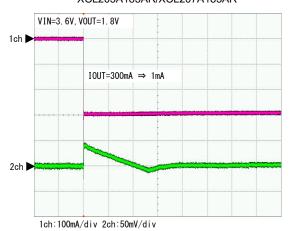

(16) 負荷過渡応答 2

MODE: PWM Control

XCL205A183AR/XCL207A183AR



Time:100µs/div

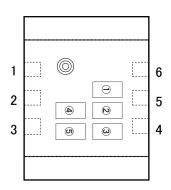

Time:100µs/div

XCL205A183AR/XCL207A183AR

Time:100µs/div

XCL205A183AR/XCL207A183AR

Time:100µs/div


■パッケージインフォメーション

最新のパッケージ情報については www.torex.co.jp/technical-support/packages/ をご覧ください。

PACKAGE	OUTLINE / LAND PATTERN	THERMAL CHARACTERISTICS
CL-2025	CL-2025 PKG	CL-2025 Power Dissipation
CL-2025-02	CL-2025-02 PKG	CL-2025-02 Power Dissipation

■マーキング

●CL-2025/CL-2025-02

マーク① 製品番号を表す。

シンボル	品名表記例
4	XCL205A****-G
4	XCL205F****-G
С	XCL205B****-G
C	XCL205G****-G
K	XCL205C****-G
5	XCL206A****-G
5	XCL206F****-G
D	XCL206B****-G
D	XCL206G****-G
L	XCL206C****-G
6	XCL207A****-G
6	XCL207F****-G
F	XCL207B****-G
	XCL207G****-G
М	XCL207C****-G

マーク② 出力電圧の整数部と発振周波数を表す。

出力電圧	シンボル	
(V)	XCL20*A/B/C****	XCL20*G/F****
0.x	F	U
1.x	Н	V
2.x	K	X
3.x	L	Υ
4.x	M	Z

マーク③ 出力電圧の小数部を表す。

出力電圧(V)	シンボル	品名表記例
X.0	0	XCL20***0***-G
X.05	Α	XCL20***A***-G
X.1	1	XCL20***1***-G
X.15	В	XCL20***B***-G
X.2	2	XCL20***2***-G
X.25	С	XCL20***C***-G
X.3	3	XCL20***3***-G
X.35	D	XCL20***D***-G
X.4	4	XCL20***4***-G
X.45	E	XCL20***E***-G
X.5	5	XCL20***5***-G
X.55	F	XCL20***F***-G
X.6	6	XCL20***6***-G
X.65	Н	XCL20***H***-G
X.7	7	XCL20***7***-G
X.75	K	XCL20***K***-G
X.8	8	XCL20***8***-G
X.85	L	XCL20***L***-G
X.9	9	XCL20***9***-G
X.95	М	XCL20***M***-G

マーク④,⑤ 01~09、0A~0Z、11~9Z、A1~A9、AA~Z9、ZA~ZZ を順番とする。 (但し、G、I、J、O、Q、W は除く。反転文字は使用しない。)

- 1. 本データシートに記載された内容(製品仕様、特性、データ等)は、改善のために予告なしに変更することがあります。製品のご使用にあたっては、その最新情報を当社または当社代理店へお問い合わせ下さい。
- 2. 本データシートに記載された内容は、製品の代表的動作及び特性を説明するものでありそれらの使用に関連して発生した第三者の知的財産権の侵害などに関し当社は一切その責任を負いません。 又その使用に際して当社及び第三者の知的財産権の実施許諾を行うものではありません。
- 3. 本データシートに記載された製品或いは内容の情報を海外へ持ち出される際には、「外国為替及び外国貿易法」その他適用がある輸出関連法令を遵守し、必要な手続きを行って下さい。
- 4. 本製品は、1)原子力制御機器、2)航空宇宙機器、3)医療機器、4)車両・その他輸送機器、5)各種安全 装置及び燃焼制御装置等々のように、その機器が生命、身体、財産等へ重大な損害を及ぼす可能性 があるような非常に高い信頼性を要求される用途に使用されることを意図しておりません。 これらの用途への使用は当社の事前の書面による承諾なしに使用しないで下さい。
- 5. 当社は製品の品質及び信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生します。 故障のために生じる人身事故、財産への損害を防ぐためにも設計上のフェールセーフ、冗長設計及び延焼対策にご留意をお願いします。
- 6. 本データシートに記載された製品には耐放射線設計はなされておりません。
- 7. 保証値を超えた使用、誤った使用、不適切な使用等に起因する損害については、当社では責任を負いかねますので、ご了承下さい。
- 8. 本データシートに記載された内容を当社の事前の書面による承諾なしに転載、複製することは、固くお断りします。

トレックス・セミコンダクター株式会社