TOIREX

CTR33020-001a

3V to 18V, 3A, $50m\Omega$ Power Switch

■GENERAL DESCRIPTION

The XCA801 is a single channel power switch with configurable rise time and with an integrated quick output discharge (QOD). In addition, the device features thermal shutdown to protect the device against high junction temperature.

The device contains an N-channel MOSFET that can operate over an input voltage range of 3V to 18V.

Applications with particular inrush current requirements can set the output slew rate with a single external capacitor. Quick output discharge function can be implemented in the XCA801 variants by connecting the VOUT pin to the QOD pin. Undervoltage lock-out is used to turn off the device if the VIN voltage drops below a threshold value, ensuring that the downstream circuitry is not damaged by being supplied by a voltage lower than intended.

The XCA801 is available in a leadless DFN2×2-6L package.

■ APPLICATION

- Adapter Powered Systems
- Industrial Systems
- Set-Top Box
- Digital TV

■FEATURE

Input Voltage Range Output Current On Resistance Supply Current Stand-by Current Function

Protection Function

Package

Operating Ambient Temperature Environmentally Friendly

- 3.0V ~ 18.0V (Absolute Max 20.0V)
- : 3A
- : 50mΩ
- : 170µA
- : 2µA
- Adjustable Quickly Discharge (QOD) Adjustable Rise Time Control (CT)
- : Adjustable UVLO Current Limit (Latch protection) Thermal Shutdown
- : DFN2×2-6L (2.0 x 2.0 x 0.8mm)
- : **-40°**C **~ 85°**C
- : EU RoHS Compliant, Pb Free

TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

Inrush current

Vin=12V, COUT=470µF, CT=10nF, RL=NA

BLOCK DIAGRAMS

■PRODUCT CLASSIFICATION

Ordering Information

PRODUCT NAME	PACKAGE	ORDER UNIT
XCA801AA30CR	DFN2×2-6L	3,000pcs/Reel

■ PIN CONFIGURATION

■ PIN ASSIGNMENT

PIN NUMBER	PIN NAME	FUNCTIONS
1	VOUT	Output
2	QOD	Quick Output Discharge pin.
3	СТ	Switch slew rate control.
4	GND	Ground
5	EN/UVLO	Active high switch control input and UVLO adjustment. Do not leave floating
6	VIN	Switch input. Place ceramic bypass capacitor(s) between this pin and GND
-	EP	Connect to GND

■FUNCTION CHART

PIN NAME	SIGNAL STATUS	
	L	Stand-by
EN/UVLO	Н	Active
	OPEN	Undefined state (*1)

^(*1) Please do not leave the EN/UVLO pin open. Each should have a certain voltage.

■ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNITS
V _{IN} Pin Voltage	VIN	-0.3 ~ 20.0	V
Vout Pin Voltage	Vout	-0.3 ~ V _{IN} + 0.3 or 20.0	V
EN/UVLO Pin Voltage	V _{EN/UVLO}	-0.3 ~ 20.0	V
QOD Pin Voltage	V _{QOD}	-0.3 ~ 20.0	V
CT Pin Voltage	Vct	-0.3 ~ 5.5	V
Thermal Characteristic	θ _{JA}	120	°C/W
	θις	20	°C/W
Maximum Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-65 ~ 150	°C
Lead Temperature (Soldering 10 sec)	T _{LEAD}	260	°C

■RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Input Supply Voltage	V _{IN}	3.0	-	18.0	V
Output Voltage	Vout	0	-	18.0	V
Operating Ambient Temperature	Topr	-40	-	85	°C

Notes:

Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(2) If out of its operation conditions, the device is not guaranteed to function.

⁽¹⁾ Stresses exceed those ratings may damage the device.

■ELECTRICAL CHARACTERISTICS

$(V_{\rm IN} = 9)/V_{\rm EN/(1)/(0} = 2)/$	$CIN = 1\mu F COUT =$	$1_{\rm H}E$ CT = 2200pE	Ta = 25° C unless	otherwise specified)
(VIN - 3V, VEN/UVLO - 2V,	-1μ , $-001 -$	· 1µ1, 01 – 2200µ1,	, ia – 25 C, uness	otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Supply						
Input Voltage Range			3.0	-	18.0	V
Supply Current (Quiescent)	lq	V _{EN/UVLO} = 2V, No Load	90	170	270	μA
Supply Current (Shutdown)	Isd	V _{EN/UVLO} = 0V	-	2	6	μA
Under Voltage Lockout Threshold		VIN Rising	2.55	2.75	2.95	V
Under Voltage Lockout Threshold Hysteresis			-	150	-	mV
On-Resistance (IN-OUT)						
Switch-On Resistance *	Rds(on)		35	50	65	mΩ
Output Current						
Current Limit *	loc	DC current	3.1	4.0	-	А
Enable/UVLO						
ENARI E Linder Voltage Leekeut	VENR	V _{EN/UVLO} Rising	1.10	1.23	1.35	V
	VENF	VEN/UVLO Falling	1.05	1.13	1.20	V
ENABLE Voltage Threshold for shutdown	Vsd		0.5	0.75	1.0	V
ENABLE Input Leakage Current	IEN		-	-	1	μA
Quick Output Discharge						
RQOD Effective Resistance	Rqod		150	260	400	Ω
Over Temperature Protection						
Thermal Shutdown *	Tsd		-	160	-	°C
* Cuaranteed by design						

* Guaranteed by design.

■OPERATIONAL EXPLANATION

< Function Description >

The XCA801 is a 6-pin, 3V to 18V power switch with current limit and thermal protection. This device implements a low resistance N-channel MOSFET which reduces the drop out voltage across the device.

The device starts its operation by monitoring the VIN bus. When VIN exceeds the under voltage lockout threshold, the device samples the EN/UVLO pin voltage to turn on/off the MOSFET. The internal MOSFET of the device starts conducting and allow current to flow from VIN to VOUT when EN/UVLO is held above V_{ENR} . When setting EN/UVLO below V_{ENF} , the internal MOSFET disconnect from VIN to VOUT. While EN/UVLO voltage held below V_{SD} takes the device into shutdown mode.

< Adjustable Rise Time (CT pin) >

The device has a configurable slew rate which helps to reduce large inrush current by connecting CT pin with capacitance no more than 27000pF.

CT	RISE TIME (µs) 10% to 90%, CIN = 1µF, COUT = 0.1µF, RL = 10 Ω					
CI	VIN = 18V	VIN = 12V	VIN = 9V	VIN = 5V	VIN = 3.3V	
470pF	253	215	193	153	130	
1000pF	385	268	213	155	132	
2200pF	780	525	400	233	165	
4700pF	1820	1218	916	513	345	
10000pF	3933	2588	1926	1060	708	
22000pF	8505	5690	4253	2368	1570	

< Quick Output Discharge (QOD pin) >

It also features a QOD pin, which allows the configuration of the discharge rate of VOUT once the switch is disabled.

V/INI	FALL TIME (μ s) 90% to 10%, CIN = 1 μ F, IOUT = 0A, EN/UVLO = 0V, QOD Short Vout				
VIIN	COUT = 1µF	COUT = 10µF	COUT = 22µF		
3.3V	665	6355	15340		
5.0V	625	6110	14480		
9.0V	485	5540	12030		
12V	415	5055	10540		
18V	325	4345	8110		

■OPERATIONAL EXPLANATION

< Thermal Shutdown >

The device has a thermal protection feature.

Due to this device protects itself against thermal damage due to over-temperature conditions. It disables when the junction temperature (Tj) rises above the thermal shutdown threshold (T_{SD}).

< Transient Protection (Current Limit / Short Protection) >

The device interrupts current flow when overload current limit or short circuit condition, the input inductance generates a positive voltage spike on the input, and the output inductance generates a negative voltage spike on the output.

The peak amplitude of voltage spikes (transients) is dependent on the value of inductance in series to the input or output of the device. Such transients maybe exceed the absolute maximum ratings of the device.

Typical methods for improving transients include:

- Minimize lead length and inductance into and out of the device.
- Use larger PCB ground plane.
- Connect a Schottky diode (Option D1 in Figure below) from the VOUT to ground to absorb negative spikes.
- Connect a low-ESR capacitor larger than 1µF at the VOUT pin very close to the device.
- Use a larger capacitor C_{IN} to absorb the energy of the input transients.

Some applications require additional Transient Voltage Suppressor (TVS) to keep transients below the absolute maximum rating of the device. A TVS can help to absorb the excessive energy and prevent it from creating very fast transient voltages on the input of the device. Use a suitable TVS to clamp the transient voltage below the absolute maximum rating of the device.

■TYPICAL PERFORMANCE CHARACTERISTICS

CIN = $1\mu F$, RQOD=NA, Ta = $25^{\circ}C$, unless otherwise noted.

■ PACKAGING INFORMATION

●DFN2×2-6L

TOP VIEW

BOTTOM VIEW

MIN.	TYP.	MAX.
0.7	0.75	0.8
-	0.2	-
0.25	0.3	0.35
-	2	-
1.3	1.4	1.5
-	2	-
0.5	0.6	0.7
-	0.65	-
0.25	0.3	0.35
	MIN. 0.7 - 0.25 - 1.3 - 0.5 - 0.25	MIN. TYP. 0.7 0.75 - 0.2 0.25 0.3 - 2 1.3 1.4 - 2 0.5 0.6 - 0.65 0.25 0.3

Unit:mm

■ PACKAGING INFORMATION (Continued)

●DFN2×2-6L Reference Pattern Layout

TOIREX 11/12

■MARKING RULE

801: Part No. XCA801AA30CR XXXX: Denotes assembly Data Code & Lot No.

- 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.
- 10. This is a special product which is allowed to be promoted to Customers outside Japan only. The delivery is not going through Torex HQ in Japan but going through Torex Taiwan office.

TOREX SEMICONDUCTOR LTD.