

Torex...Powerfully Small!

60V/300mA Synchronous Step-down DC/DC Converter XC9702 Series Product Overview

May 2024 TOREX Semiconductor Rev. 2.1

XC9702: 60V 300mA High Voltage Step-down DC/DC convertor

60V Smallest solution size / Low Iq and high efficiency at light loads / Supports high step-down ratios

Features

Input Voltage : $4.5V \sim 60.0V$ (Absolute Max. : 66.0V) Output Voltage Range : $2.5V \sim 12.0V$ (FB: $0.75V \pm 1.5\%$)

Output Current : 300mA Supply Current : 12µA Oscillation Frequency : 1.0MHz

Efficiency : 83% (V_{IN} =12V, V_{OUT} =5V, I_{OUT} =1mA)

Control Method : F-PWM (MODE="H")

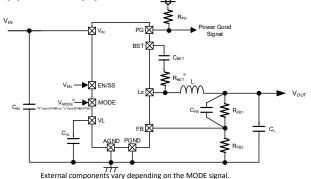
PWM/PFM (MODE="L")

Function : Soft-start (External Adj.)

Power Good

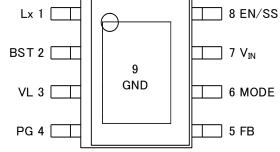
UVLO

Protection : Current Limit, Over Voltage Protection

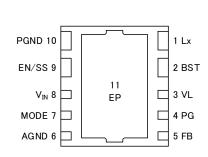

Thermal Shutdown

Lx Short Protection

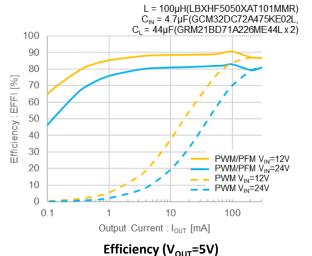
Package : HSOP-8N, USP-10B

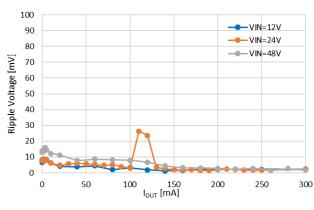

Operating Ambient Temp : -40°C ~ 125°C

Typical Application Circuit



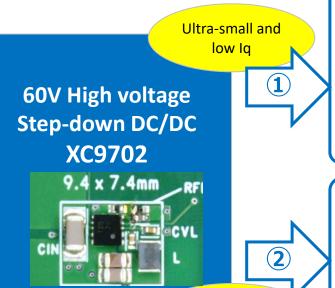
Package


HSOP-8N (6.2x5.2x1.7mm)



USP-10B (2.6x2.9x0.6mm)

High Efficiency / Low Ripple Voltage


Ripple Voltage (V_{OUT}=5V)

60V High voltage Step-down DC/DC convertor, XC9702 series

High voltage step-down DC/DC converter to meet requirements for compact and low Iq

step-down from 12V/24V line


- 1 Ultra-small / High efficiency at light load
- √ 60V Smallest Class Solution Size
- ✓ For low consumption in standby
- ✓ Solving the heat problem of medium and high voltage input LDOs by replacing them with a smaller area.

2 High voltage / Low ripple / High temp.

"60V input", "High step-down ratio", "MODE(PWM⇔PWM/PFM)", and "+125°C operation"

- ✓ Low ripple 3.3V/5V output from unstable 24V input to FA/sensors
- ✓ Handling input overshoots and high temperatures

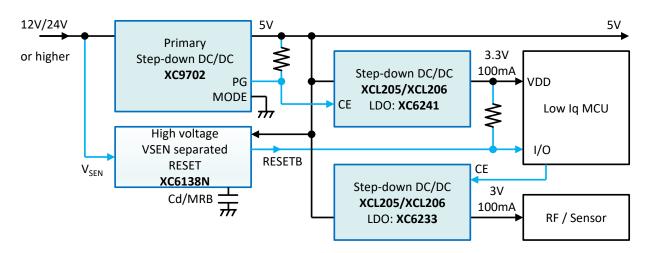
Ideal for miniaturization / heat reduction due to high voltage / small size / low Iq.

Also suitable for replacing conventional high-voltage LDOs.

For FA / Industrial

Products

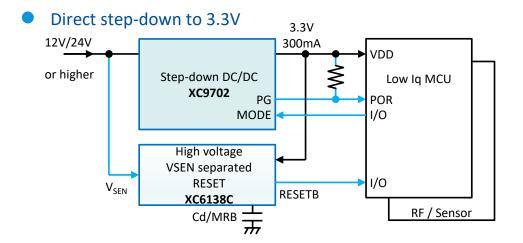
> Sensors and security for Factories / Buildings / Facilities, etc.


In addition, 125°C operating temperature and 60V operation for overshooting

Suitable for various FA sensors

XC9702 : Application Block Diagram for Small industrial sensors

- Various small devices and modules with 12V/24V or higher input: Industrial sensors / IoT
 - Once step-down to 5V, then generate 3.3V



Supplies power to MCUs, sensors, etc., by stepping down from 12V/24V or higher to 5V, and then stepping down to 3.3V, 3.0V, etc.

Controls the sequence of the subsequent power supply with the PG of the XC9702.

MODE "H" \Rightarrow PWM/PFM

Supervises 12V/24V power voltage with XC6138N and monitor output to MCU.

Direct step-down from 12V/24V to 3.3V. Power source for small sensors used in FA.

Control method can be changed dynamically with the MODE pin.

MODE "H" : PWM \Rightarrow Low noise (For sensors, etc.)

MODE "L" : PWM/PFM \Rightarrow High efficiency at light load

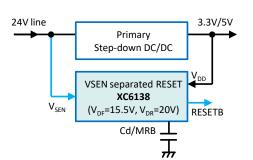
Space-Saving DC/DC and Voltage Monitoring for Medium and High Voltage Inputs

For fluctuating 12V/24 or higher lines

Technical trend and challenges

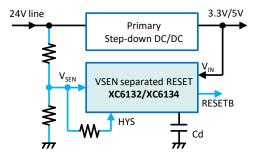
- Overshooting must be addressed. Power supply inputs of 40 V or higher are also becoming more common, and heat generated by LDOs is also an issue.
- Large fluctuations in the power supply line due to impedance, load fluctuations and induction from motors, etc., must be addressed.

• TOREX Proposal: Space-saving step-down DC/DC for high voltage and high step-down ratio, and voltage detector with wide range of release/detection voltage

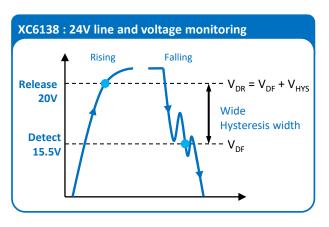

➤60V 300mA High-voltage Step-down DC/DC : XC9702

- Supports 60V operation and high step-down ratio.
- Capable of direct step-down from 24V with large fluctuation to 3.3V.
- High efficiency from light loads. F-PWM and PWM/PFM can be selected from MCU by MODE pin.
- Small and Space-saving suitable for replacing LDOs

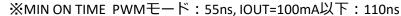
Voltage detector with large release/detection difference : XC6138, XC6132/XC6134

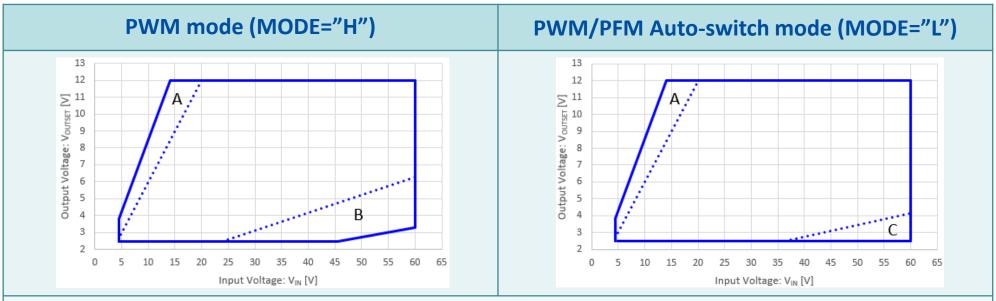

- Release voltage is set to a voltage sufficient for rise.
- A large hysteresis is set for Detect voltage, considering large fluctuations in the power supply line.
 Before the 3.3V/5V line voltage drops, the MCU can be notified to perform stop processing, etc.,
 to ensure stable and safe operation of products.

XC6138: 76V high-voltage sense pin Wide hysteresis width selectable


XC6132/XC6134

Hysteresis width set by an external resistor (**XC6132**: V_{SFN} pin surge voltage protection)


60V 300mA DC/DC : XC9702 World's smallest class of solution size 9.4mm x 7.4mm = 69.6mm²



XC9702: Input/output conditions of Stable output region

The area where the DC/DC converter can supply a stable output voltage is called the "Stable output region" and is indicated by the solid blue line in the graph below.

Please note the following points when using A^C within the stable output range. Stable output voltage is supplied even in the A^C range.

- A) Transient response may be reduced.
- B) Oscillation of V_{OUT} waveform which increases ripple may occur at light loads where I_{OUT} is 100mA or less.
- C) Operation is stable, although it may not shift to PWM operation even at the maximum output current.

Operation outside the Stable output region

- Under high step-down ratio conditions, abnormal sinusoidal oscillation or pulse skipping may occur.
- Under low step-down ratio conditions, the IC operates at the Maximum Duty Cycle, and the output voltage may drop below the set V_{OUT} voltage. **Even in these cases, there is no malfunction or reduction in product life.**

XC9702 Application circuit1 : Voltage inverting using step-down DC/DC

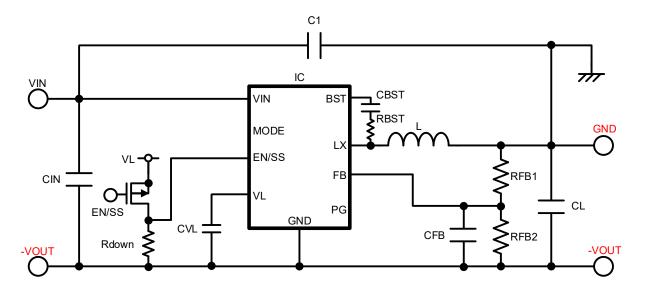
Voltage inverting using step-down DC/DC

To obtain an inexpensive inverting voltage using step-down DC/DC. To generate an inverting voltage of $-2.5V^{-12V}$ from 5V/12V/24V.

- Applications
- Various negative power supplies (OP amp/measuring amplifiers ±12V etc.)
- Gate drive bias (floating power supply / negative power supply)

Example specifications

Input Voltage : $4.5V \sim 60.0V + V_{OUT}$


Output Voltage : -2.5V ~ -12.0V

Output Current : Max. 50mA ~ 100mA

Features : Inverting voltage

generation using step-down DC/DC Small size solution

Typical Application Circuit

Evaluation Board

XC9702 Application circuit2:

Multi-channel isolated power supplies using transformers /couple inductors

 Multi-channel isolated power supplies using transformers /couple inductors

To obtain an inexpensive isolated power supplies using transformers/couple inductors.

To generate multi-channel of small power isolated power supplies To be used for floating power supplies, inverting power supplies, etc.

- Applications
- Isolated power supply
- Various negative power supplies (OP amp/measuring amplifiers ±12V, ±15V, etc.)
- Gate drive bias (floating power supply / negative power supply)

Typical Application Circuit D3 POS₃ D2 POS₂ D1 POS₁ CL2 RL2 IC NEG2 VIN **BST** MODE VOUT MODE EN/SS RBST EN/SS FΒ CIN PG GND CVL 2 RFB2 **GND GND**

Example specifications

Input Voltage : $4.5V \sim 60.0V$ Output Voltage 1 : $2.5V \sim 12.0V$ Output Voltage 2 \sim : 5V/12V/15V etc

*depending on the winding ratio

Output Current 1 : Max $100mA \sim 200mA$ Output Current 2^{\sim} : Max $10mA \sim 20mA$

Features : Floating voltage available.

Multi-channel are

possible by transformers.

Evaluation Board

